1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkContourMeanDistanceImageFilter_h
#define itkContourMeanDistanceImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkNumericTraits.h"
namespace itk
{
/** \class ContourMeanDistanceImageFilter
* \brief Computes the Mean distance between the boundaries of
* non-zero regions of two images.
*
* ContourMeanDistanceImageFilter computes the distance between the
* set non-zero pixels of two images using the following formula:
* \f[ H(A,B) = \max(h(A,B),h(B,A)) \f]
* where
* \f[ h(A,B) = \mathrm{mean}_{a \in A} \min_{b \in B} \| a - b\| \f] is the dir
ected
* Mean distance
* and \f$A\f$ and \f$B\f$ are respectively the set of non-zero pixels
* in the first and second input images.
*
* In particular, this filter uses the ContourDirectedMeanImageFilter
* inside to compute the two directed distances and then select the
* largest of the two.
*
* The Mean distance measures the degree of mismatch between two sets
* and behaves like a metric over the set of all closed bounded sets -
* with properties of identity, symmetry and triangle inequality.
*
* This filter requires the largest possible region of the first image
* and the same corresponding region in the second image.
* It behaves as filter with
* two input and one output. Thus it can be inserted in a pipeline with
* other filters. The filter passes the first input through unmodified.
*
* This filter is templated over the two input image type. It assume
* both image have the same number of dimensions.
*
* \sa ContourDirectedMeanDistanceImageFilter
*
* \author Teo Popa, ISIS Center, Georgetown University
*
* \ingroup MultiThreaded
* \ingroup ITKDistanceMap
*
* \wiki
* \wikiexample{Curves/ContourMeanDistanceImageFilter,Compute the mean distance between all points of two curves}
* \endwiki
*/
template< typename TInputImage1, typename TInputImage2 >
class ITK_TEMPLATE_EXPORT ContourMeanDistanceImageFilter:
public ImageToImageFilter< TInputImage1, TInputImage1 >
{
public:
/** Standard Self typedef */
typedef ContourMeanDistanceImageFilter Self;
typedef ImageToImageFilter< TInputImage1, TInputImage1 > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Runtime information support. */
itkTypeMacro(ContourMeanDistanceImageFilter, ImageToImageFilter);
/** Image related typedefs. */
typedef TInputImage1 InputImage1Type;
typedef TInputImage2 InputImage2Type;
typedef typename TInputImage1::Pointer InputImage1Pointer;
typedef typename TInputImage2::Pointer InputImage2Pointer;
typedef typename TInputImage1::ConstPointer InputImage1ConstPointer;
typedef typename TInputImage2::ConstPointer InputImage2ConstPointer;
typedef typename TInputImage1::RegionType RegionType;
typedef typename TInputImage1::SizeType SizeType;
typedef typename TInputImage1::IndexType IndexType;
typedef typename TInputImage1::PixelType InputImage1PixelType;
typedef typename TInputImage2::PixelType InputImage2PixelType;
/** Image related typedefs. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage1::ImageDimension);
/** Type to use form computations. */
typedef typename NumericTraits< InputImage1PixelType >::RealType RealType;
/** Set the first input. */
void SetInput1(const InputImage1Type *image);
/** Set the second input. */
void SetInput2(const InputImage2Type *image);
/** Get the first input. */
const InputImage1Type * GetInput1();
/** Get the second input. */
const InputImage2Type * GetInput2();
/** Return the computed Mean distance. */
itkGetConstMacro(MeanDistance, RealType);
/** Set if image spacing should be used in computing distances. */
itkSetMacro( UseImageSpacing, bool );
itkGetConstMacro( UseImageSpacing, bool );
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro( InputHasNumericTraitsCheck,
( Concept::HasNumericTraits< InputImage1PixelType > ) );
// End concept checking
#endif
protected:
ContourMeanDistanceImageFilter();
~ContourMeanDistanceImageFilter() ITK_OVERRIDE {}
void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
/** GenerateData. */
void GenerateData() ITK_OVERRIDE;
// Override since the filter needs all the data for the algorithm
void GenerateInputRequestedRegion() ITK_OVERRIDE;
// Override since the filter produces all of its output
void EnlargeOutputRequestedRegion(DataObject *data) ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(ContourMeanDistanceImageFilter);
RealType m_MeanDistance;
bool m_UseImageSpacing;
}; // end of class
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkContourMeanDistanceImageFilter.hxx"
#endif
#endif
|