File: itkContourMeanDistanceImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (168 lines) | stat: -rw-r--r-- 4,945 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkContourMeanDistanceImageFilter.h"
#include "itkFilterWatcher.h"

int itkContourMeanDistanceImageFilterTest(int, char* [] )
{

  typedef unsigned int  Pixel1Type;
  typedef float         Pixel2Type;
  enum { ImageDimension = 3 };

  typedef itk::Image<Pixel1Type,ImageDimension> Image1Type;
  typedef itk::Image<Pixel2Type,ImageDimension> Image2Type;

  Image1Type::Pointer image1 = Image1Type::New();
  Image2Type::Pointer image2 = Image2Type::New();

  Image1Type::SizeType size;
  size.Fill( 50 );

  image1->SetRegions( size );
  image2->SetRegions( size );

  image1->Allocate();
  image2->Allocate();

  image1->FillBuffer( itk::NumericTraits<Pixel1Type>::ZeroValue() );
  image2->FillBuffer( itk::NumericTraits<Pixel2Type>::ZeroValue() );

  typedef Image1Type::RegionType RegionType;
  RegionType region1;
  RegionType region2;

  typedef Image1Type::IndexType IndexType;
  IndexType index;

  size.Fill( 20 );
  index.Fill( 10 );
  region1.SetSize( size );
  region1.SetIndex( index );

  size.Fill( 15 );
  index.Fill( 20 );
  region2.SetSize( size );
  region2.SetIndex( index );

  itk::ImageRegionIterator<Image1Type> it1( image1, region1 );
  Pixel1Type count = itk::NumericTraits<Pixel1Type>::ZeroValue();
  while ( !it1.IsAtEnd() )
    {
    it1.Set( ++count );
    ++it1;
    }

  itk::ImageRegionIterator<Image2Type> it2( image2, region2 );
  while ( !it2.IsAtEnd() )
    {
    it2.Set( 7.2 );
    ++it2;
    }


  // compute the directed Mean distance h(image1,image2)
  {
  typedef itk::ContourMeanDistanceImageFilter<Image1Type,Image2Type> FilterType;
  FilterType::Pointer filter = FilterType::New();
  FilterWatcher watcher(filter, "filter");

  filter->SetInput1( image1 );
  filter->SetInput2( image2 );
  filter->Update();
  filter->Print( std::cout );


  // check results

  FilterType::RealType trueDistance = 8.07158;
    // std::sqrt( static_cast<double>(ImageDimension) );
  FilterType::RealType distance = filter->GetMeanDistance();

  std::cout << " True     distance: " << trueDistance << std::endl;
  std::cout << " Computed distance: " << distance << std::endl;

  if ( itk::Math::abs( trueDistance - distance ) > 0.5 )
    {
    std::cout << "Test failed. " << std::endl;
    return EXIT_FAILURE;
    }
  }

  // compute the directed Mean distance h(image2,image1)
  {
  typedef itk::ContourMeanDistanceImageFilter<Image2Type,Image1Type> FilterType;
  FilterType::Pointer filter = FilterType::New();

  filter->SetInput1( image2 );
  filter->SetInput2( image1 );
  filter->Update();


  // check results
  FilterType::RealType trueDistance = 8.07158;
  FilterType::RealType distance = filter->GetMeanDistance();

  std::cout << " True     distance: " << trueDistance << std::endl;
  std::cout << " Computed distance: " << distance << std::endl;

  if ( itk::Math::abs( trueDistance - distance ) > 0.5 )
    {
    std::cout << "Test failed. " << std::endl;
    return EXIT_FAILURE;
    }
  }

  // compute the directed Mean distance h(image2,image1) with different pixel sizes
  {
    typedef itk::ContourMeanDistanceImageFilter<Image2Type,Image1Type> FilterType;
    FilterType::Pointer filter = FilterType::New();
    Image1Type::SpacingType spacing1 = image1->GetSpacing();
    spacing1[0]=spacing1[0]/2;
    spacing1[1]=spacing1[1]/2;
    spacing1[2]=spacing1[2]/2;
    image1->SetSpacing(spacing1);

    Image2Type::SpacingType spacing2 = image2->GetSpacing();
    spacing2[0]=spacing2[0]/2;
    spacing2[1]=spacing2[1]/2;
    spacing2[2]=spacing2[2]/2;
    image2->SetSpacing(spacing2);

    filter->SetInput1( image2 );
    filter->SetInput2( image1 );
    filter->SetUseImageSpacing(true);
    filter->Update();

    // check results
    FilterType::RealType trueDistance = 8.07158/2;
    FilterType::RealType distance = filter->GetMeanDistance();
    std::cout << " True     distance: " << trueDistance << std::endl;
    std::cout << " Computed distance: " << distance << std::endl;
    if ( itk::Math::abs( trueDistance - distance ) > 0.5 )
      {
      std::cout << "Test failed. " << std::endl;
      return EXIT_FAILURE;
      }
  }

  std::cout << "Test passed. " << std::endl;
  return EXIT_SUCCESS;

}