1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkVnlInverseFFTImageFilter_hxx
#define itkVnlInverseFFTImageFilter_hxx
#include "itkInverseFFTImageFilter.hxx"
#include "itkProgressReporter.h"
#include "itkVnlFFTCommon.h"
#include "itkVnlInverseFFTImageFilter.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
void
VnlInverseFFTImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
// Get pointers to the input and output.
typename InputImageType::ConstPointer inputPtr = this->GetInput();
typename OutputImageType::Pointer outputPtr = this->GetOutput();
if ( !inputPtr || !outputPtr )
{
return;
}
// We don't have a nice progress to report, but at least this simple line
// reports the beginning and the end of the process.
ProgressReporter progress( this, 0, 1 );
const OutputSizeType outputSize = outputPtr->GetLargestPossibleRegion().GetSize();
// Allocate output buffer memory
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
const InputPixelType *in = inputPtr->GetBufferPointer();
unsigned int vectorSize = 1;
for ( unsigned int i = 0; i < ImageDimension; i++ )
{
if ( !VnlFFTCommon::IsDimensionSizeLegal( outputSize[i] ) )
{
itkExceptionMacro(<< "Cannot compute FFT of image with size "
<< outputSize << ". VnlInverseFFTImageFilter operates "
<< "only on images whose size in each dimension is a multiple of "
<< "2, 3, or 5." );
}
vectorSize *= outputSize[i];
}
SignalVectorType signal( vectorSize );
for (unsigned int i = 0; i < vectorSize; i++ )
{
signal[i] = in[i];
}
OutputPixelType *out = outputPtr->GetBufferPointer();
// call the proper transform, based on compile type template parameter
VnlFFTCommon::VnlFFTTransform< OutputImageType > vnlfft( outputSize );
vnlfft.transform( signal.data_block(), 1 );
// Copy the VNL output back to the ITK image.
// Extract the real part of the signal.
// Ideally, the normalization by the number of elements
// should have been accounted for by the VNL inverse Fourier transform,
// but it is not. So, we take care of it by dividing the signal by
// the vectorSize.
for ( unsigned int i = 0; i < vectorSize; i++ )
{
out[i] = signal[i].real() / vectorSize;
}
}
template< typename TInputImage, typename TOutputImage >
SizeValueType
VnlInverseFFTImageFilter< TInputImage, TOutputImage >
::GetSizeGreatestPrimeFactor() const
{
return VnlFFTCommon::GREATEST_PRIME_FACTOR;
}
}
#endif
|