1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFFTTest_h
#define itkFFTTest_h
/* This test is build for testing forward and inverse Fast Fourier Transforms
* using VNL and FFTW FFT libraries. */
#include "itkConfigure.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkVnlForwardFFTImageFilter.h"
#include "itkVnlInverseFFTImageFilter.h"
#if defined(ITK_USE_FFTWF) || defined(ITK_USE_FFTWD)
#include "itkFFTWInverseFFTImageFilter.h"
#include "itkFFTWForwardFFTImageFilter.h"
#endif
#include "itksys/SystemTools.hxx"
#include "vnl/vnl_sample.h"
#include <cmath>
/* test_fft is the test function and it is templated over the pixel, Image
* dimensions and the FFT library to be used. */
template< typename TPixel, unsigned int VImageDimensions,
typename R2CType, typename C2RType >
int
test_fft(unsigned int *SizeOfDimensions)
{
typedef itk::Image< TPixel, VImageDimensions > RealImageType;
typedef itk::Image< std::complex< TPixel >, VImageDimensions > ComplexImageType;
unsigned int counter = 0;
typename RealImageType::SizeType imageSize;
typename RealImageType::IndexType imageIndex;
typedef typename RealImageType::IndexType::IndexValueType indexValueType;
// We are testing the FFT for 1D, 2D, and 3D images. An array
// (SizeOfDimensions) containing the sizes of each dimension is
// passed as an argument to this function. Based on the template
// argument VImageDimensions, we create a 1D, 2D, or 3D image by
// selecting the sizes of image dimensions from this array.
for (unsigned int i = 0; i < VImageDimensions; i++)
{
imageSize.SetElement( i, SizeOfDimensions[i] );
imageIndex.SetElement( i, -2*static_cast<indexValueType>(i) ); // Test for handling non-zero
// image indices correctly
}
typename RealImageType::RegionType region;
region.SetSize( imageSize );
region.SetIndex( imageIndex );
typename RealImageType::Pointer realImage = RealImageType::New();
// Create the Real Image.
realImage->SetLargestPossibleRegion( region );
realImage->SetBufferedRegion( region );
realImage->SetRequestedRegion( region );
realImage->Allocate();
// Set up spacing and origin to test passing of metadata
typename RealImageType::PointType origin;
typename RealImageType::SpacingType spacing;
typename RealImageType::DirectionType direction;
direction.Fill( 0.0 );
for ( unsigned int i = 0; i < VImageDimensions; i++ )
{
origin[i] = static_cast< typename RealImageType::PointValueType >( i ) + 1.0;
spacing[i] = static_cast< typename RealImageType::SpacingValueType >( i ) + 2.0;
direction[i][i] = static_cast< typename RealImageType::DirectionType::ValueType > ( i ) + 3.0;
}
realImage->SetOrigin( origin );
realImage->SetSpacing( spacing );
realImage->SetDirection( direction );
vnl_sample_reseed( static_cast< int >( 123456 ) );
// We use 2 region iterators for this test: the original image
// iterator and another iterator for the resultant image after
// performing FFT and IFFT.
itk::ImageRegionIterator< RealImageType > originalImageIterator( realImage, region );
// Allocate random pixel values to the image by iterating through it
// and print out the image data.
try
{
std::cerr << "---- Original image ----" << std::endl;
while( !originalImageIterator.IsAtEnd() )
{
TPixel val = vnl_sample_uniform( 0.0, 16384.0 );
if ( (counter + 1 ) % SizeOfDimensions[0] == 0 )
{
std::cout << val << std::endl;
}
else
{
std::cout << val << " ";
}
counter++;
originalImageIterator.Set( val );
++originalImageIterator;
}
std::cout << std::endl << std::endl;
}
catch ( itk::ExceptionObject & ex )
{
ex.Print( std::cerr );
return -1;
}
// Real to complex pointer. This computes the forward FFT.
typename R2CType::Pointer R2C = R2CType::New();
// Complex to Real pointer. This computes the Inverse FFT.
typename C2RType::Pointer C2R = C2RType::New();
// Set the real image created as the input to the forward FFT
// filter.
R2C->SetInput( realImage );
R2C->Print( std::cout );
try
{
R2C->Update();
}
catch ( itk::ExceptionObject & ex )
{
ex.Print( std::cerr );
return -1;
}
// Get the size and the pointer to the complex image.
typename ComplexImageType::Pointer complexImage = R2C->GetOutput();
std::complex< TPixel > *fftbuf = complexImage->GetBufferPointer();
const typename ComplexImageType::SizeType & complexImageSize =
complexImage->GetLargestPossibleRegion().GetSize();
unsigned int sizes[4] = { 1,1,1,1 };
for( unsigned int i = 0; i < VImageDimensions; i++)
{
sizes[i] = complexImageSize[i];
}
/* Print out the the frequency domain data obtained after performing
* the forward transform. */
std::cout << "Frequency domain data after forward transform:" << std::endl;
for( unsigned int i = 0; i < sizes[2]; i++)
{
unsigned int zStride = i * sizes[1] * sizes[0];
for (unsigned int j = 0; j < sizes[1]; j++)
{
unsigned int yStride = j * sizes[0];
for (unsigned int k = 0; k < sizes[0]; k++)
{
std::cout << fftbuf[zStride+yStride+k] << " ";
}
std::cout << std::endl;
}
}
std::cout << std::endl << std::endl;
// Check to see that the metadata has been copied
if ( complexImage->GetOrigin() != origin )
{
std::cerr << "Origin in R2C output does not match!" << std::endl;
return -1;
}
if ( complexImage->GetSpacing() != spacing )
{
std::cerr << "Spacing in R2C output does not match!" << std::endl;
return -1;
}
if ( complexImage->GetDirection() != direction )
{
std::cerr << "Direction in R2C output does not match!" << std::endl;
return -1;
}
// Perform the Inverse FFT to get back the Real Image. C2R is the
// complex conjugate to real image filter and we give the resulting
// complex image as input to this filter. This is the Inverse FFT of
// the image.
C2R->SetInput( complexImage );
// Inform the filter that there's an odd # of pixels in the x
// dimension.
C2R->Print( std::cout );
C2R->Update();
std::cerr << "C2R region: " << C2R->GetOutput()->GetLargestPossibleRegion() << std::endl;
typename RealImageType::Pointer imageAfterInverseFFT = C2R->GetOutput();
// Check to see that the metadata has been copied
if ( imageAfterInverseFFT->GetOrigin() != origin )
{
std::cerr << "Origin in C2R output does not match!" << std::endl;
return -1;
}
if ( imageAfterInverseFFT->GetSpacing() != spacing )
{
std::cerr << "Spacing in C2R output does not match!" << std::endl;
return -1;
}
if ( imageAfterInverseFFT->GetDirection() != direction )
{
std::cerr << "Direction in C2R output does not match!" << std::endl;
return -1;
}
// The Inverse FFT image iterator is the resultant iterator after we
// perform the FFT and Inverse FFT on the Original Image. */
itk::ImageRegionIterator< RealImageType > inverseFFTImageIterator( imageAfterInverseFFT,
region );
counter = 0;
inverseFFTImageIterator.GoToBegin();
// Print the Image data obtained by performing the Inverse FFT.
std::cerr << "---- Inverse FFT image ----" << std::endl;
while ( !inverseFFTImageIterator.IsAtEnd() )
{
TPixel val = inverseFFTImageIterator.Value();
if ( (counter + 1 ) % SizeOfDimensions[0] == 0 )
{
std::cerr << val << std::endl;
}
else
{
std::cerr << val << " ";
}
counter++;
++inverseFFTImageIterator;
}
std::cerr << std::endl << std::endl;
// Subtract the Original image Pixel Values from the resultant image
// values and test whether they are greater than 0.01 for the test
// to pass.
originalImageIterator.GoToBegin();
inverseFFTImageIterator.GoToBegin();
while ( !originalImageIterator.IsAtEnd() )
{
TPixel val = originalImageIterator.Value();
TPixel val2 = inverseFFTImageIterator.Value();
TPixel diff = itk::Math::abs( val - val2 );
if ( itk::Math::NotAlmostEquals(val, 0.0) )
{
diff /= itk::Math::abs( val );
}
if ( diff > 0.01 )
{
std::cerr << "Diff found in test_fft: " << val << " " << val2 << " diff " << diff
<< std::endl;
return -1;
}
++originalImageIterator;
++inverseFFTImageIterator;
}
std::cout << std::endl << std::endl;
return 0;
}
/* test_fft_rtc is the test function to compare two implementations
* (Direct FFT only). It is templated over the pixel, Image
* dimensions and the FFT libraries to be used. */
template< typename TPixel, unsigned int VImageDimensions,
typename R2CAType, typename R2CBType >
int
test_fft_rtc(unsigned int *SizeOfDimensions)
{
typedef itk::Image< TPixel, VImageDimensions > RealImageType;
typedef itk::Image< std::complex< TPixel >, VImageDimensions > ComplexImageType;
unsigned int counter = 0;
typename RealImageType::SizeType imageSize;
typename RealImageType::IndexType imageIndex;
// We are testing the FFT for 1D, 2D, and 3D images. An array
// (SizeOfDimensions) containing the sizes of each dimension is
// passed as an argument to this function. Based on the template
// argument VImageDimensions, we create a 1D, 2D, or 3D image by
// selecting the sizes of image dimensions from this array.
for (unsigned int i = 0; i < VImageDimensions; i++)
{
imageSize.SetElement( i, SizeOfDimensions[i] );
imageIndex.SetElement( i, 0 );
}
typename RealImageType::RegionType region;
region.SetSize( imageSize );
region.SetIndex( imageIndex );
typename RealImageType::Pointer realImage = RealImageType::New();
// Create the Real Image.
realImage->SetLargestPossibleRegion( region );
realImage->SetBufferedRegion( region );
realImage->SetRequestedRegion( region );
realImage->Allocate();
vnl_sample_reseed( static_cast<int >( itksys::SystemTools::GetTime() / 10000.0 ) );
// We use 2 region iterators for this test the original image
// iterator and another iterator for the resultant image after
// performing FFT and IFFT.
itk::ImageRegionIterator< RealImageType > originalImageIterator( realImage, region );
// Allocate random pixel values to the image by iterating through it
// and Print out the image data.
try
{
while( !originalImageIterator.IsAtEnd() )
{
TPixel val = vnl_sample_uniform( 0.0, 16384.0 );
if ( (counter + 1 ) % SizeOfDimensions[0] == 0 )
{
std::cout << val << std::endl;
}
else
{
std::cout << val << " ";
}
counter++;
originalImageIterator.Set( val );
++originalImageIterator;
}
std::cout << std::endl << std::endl;
}
catch( itk::ExceptionObject & ex )
{
ex.Print( std::cerr );
return -1;
}
// Real to complex pointers. This computes the forward FFT.
typename R2CAType::Pointer R2Ca = R2CAType::New();
// Real to complex pointers. This computes the forward FFT.
typename R2CBType::Pointer R2Cb = R2CBType::New();
// Set the real image created as the input to the forward FFT
// filter.
R2Ca->SetInput( realImage );
R2Ca->Update();
R2Cb->SetInput( realImage );
R2Cb->Update();
// Get the size and the pointer to the complex image.
typename ComplexImageType::Pointer complexImageA = R2Ca->GetOutput();
std::complex< TPixel > *fftbufA = complexImageA->GetBufferPointer();
const typename ComplexImageType::SizeType & complexImageSizeA =
complexImageA->GetLargestPossibleRegion().GetSize();
typename ComplexImageType::Pointer complexImageB = R2Cb->GetOutput();
std::complex< TPixel > *fftbufB = complexImageB->GetBufferPointer();
const typename ComplexImageType::SizeType & complexImageSizeB =
complexImageB->GetLargestPossibleRegion().GetSize();
unsigned int sizesA[4] = { 1,1,1,1 };
unsigned int sizesB[4] = { 1,1,1,1 };
for(unsigned int i = 0; i < VImageDimensions; i++)
{
// The size may be different if one implementation returns a
// full matrix but not the other.
sizesA[i] = complexImageSizeA[i];
sizesB[i] = complexImageSizeB[i];
}
// Print out the the frequency domain data obtained after performing
// the forward transform.
std::cout << "Frequency domain data after forward transform:" << std::endl;
for (unsigned int i = 0; i < sizesA[2]; i++)
{
unsigned int zStride = i * sizesA[1] * sizesA[0];
for (unsigned int j = 0; j < sizesA[1]; j++)
{
unsigned int yStride = j * sizesA[0];
for (unsigned int k = 0; k < sizesA[0]; k++)
{
std::cout << fftbufA[zStride+yStride+k] << " ";
}
std::cout << std::endl;
}
}
std::cout << std::endl << std::endl;
for (unsigned int i = 0; i < sizesB[2]; i++)
{
unsigned int zStride = i * sizesB[1] * sizesB[0];
for (unsigned int j = 0; j < sizesB[1]; j++)
{
unsigned int yStride = j * sizesB[0];
for (unsigned int k = 0; k < sizesB[0]; k++)
{
std::cout << fftbufB[zStride+yStride+k] << " ";
}
std::cout << std::endl;
}
}
std::cout << std::endl << std::endl;
// Subtract the pixel values from the two images. If one pixel
// difference is greater than 0.01, the test is considered to have
// failed.
for (unsigned int i = 0; i < std::min( sizesA[2], sizesB[2] ); i++)
{
unsigned int zStrideA = i * sizesA[1] * sizesA[0];
unsigned int zStrideB = i * sizesB[1] * sizesB[0];
for (unsigned int j = 0; j < std::min( sizesA[1], sizesB[1] ); j++)
{
unsigned int yStrideA = j * sizesA[0];
unsigned int yStrideB = j * sizesB[0];
for (unsigned int k = 0; k < std::min( sizesA[0], sizesB[0] ); k++)
{
double val = std::abs(fftbufA[zStrideA+yStrideA+k]);
double diff = std::abs(fftbufA[zStrideA+yStrideA+k] - fftbufB[zStrideB+yStrideB+k]);
if ( itk::Math::NotAlmostEquals(val, 0.0) )
{
diff /= itk::Math::abs( val );
}
if ( diff > 0.01 )
{
std::cerr << "Diff found in test_fft_r2c: " << fftbufA[zStrideA+yStrideA+k]
<< " " << fftbufB[zStrideB+yStrideB+k] << " diff " << diff << std::endl;
return -1;
}
}
}
}
std::cout << std::endl << std::endl;
return 0;
}
#endif
|