1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSTAPLEImageFilter_h
#define itkSTAPLEImageFilter_h
#include "itkImageToImageFilter.h"
#include <vector>
namespace itk
{
/** \class STAPLEImageFilter
*
* \brief The STAPLE filter implements the Simultaneous Truth and Performance
* Level Estimation algorithm for generating ground truth volumes from a set of
* binary expert segmentations.
*
* The STAPLE algorithm treats segmentation as a pixelwise classification,
* which leads to an averaging scheme that accounts for systematic biases in
* the behavior of experts in order to generate a fuzzy ground truth volume and
* simultaneous accuracy assessment of each expert. The ground truth volumes
* produced by this filter are floating point volumes of values between zero
* and one that indicate probability of each pixel being in the object targeted
* by the segmentation.
*
* The STAPLE algorithm is described in
*
* S. Warfield, K. Zou, W. Wells, "Validation of image segmentation and expert
* quality with an expectation-maximization algorithm" in MICCAI 2002: Fifth
* International Conference on Medical Image Computing and Computer-Assisted
* Intervention, Springer-Verlag, Heidelberg, Germany, 2002, pp. 298-306
*
* \par INPUTS
* Input volumes to the STAPLE filter must be binary segmentations of an image,
* that is, there must be a single foreground value that represents positively
* classified pixels (pixels that are considered to belong inside the
* segmentation). Any number of background pixel values may be present in the
* input images. You can, for example, input volumes with many different
* labels as long as the structure you are interested in creating ground truth
* for is consistently labeled among all input volumes. Pixel type of the
* input volumes does not matter. Specify the label value for positively
* classified pixels using SetForegroundValue. All other labels will be
* considered to be negatively classified pixels (background).
*
* Input volumes must all contain the same size RequestedRegions.
*
* \par OUTPUTS
* The STAPLE filter produces a single output volume with a range of floating
* point values from zero to one. IT IS VERY IMPORTANT TO INSTANTIATE THIS
* FILTER WITH A FLOATING POINT OUTPUT TYPE (floats or doubles). You may
* threshold the output above some probability threshold if you wish to produce
* a binary ground truth.
*
* \par PARAMETERS
* The STAPLE algorithm requires a number of inputs. You may specify any
* number of input volumes using the SetInput(i, p_i) method, where i ranges
* from zero to N-1, N is the total number of input segmentations, and p_i is
* the SmartPointer to the i-th segmentation.
*
* The SetConfidenceWeight parameter is a modifier for the prior probability
* that any pixel would be classified as inside the target object. This
* implementation of the STAPLE algorithm automatically calculates prior
* positive classification probability as the average fraction of the image
* volume filled by the target object in each input segmentation. The
* ConfidenceWeight parameter allows for scaling the of this default prior
* probability: if g_t is the prior probability that a pixel would be
* classified inside the target object, then g_t is set to g_t *
* ConfidenceWeight before iterating on the solution. In general
* ConfidenceWeight should be left to the default of 1.0.
*
* You must provide a foreground value using SetForegroundValue that the STAPLE
* algorithm will use to identify positively classified pixels in the the input
* images. All other values in the image will be treated as background values.
* For example, if your input segmentations consist of 1's everywhere inside
* the segmented region, then use SetForegroundValue(1).
*
* The STAPLE algorithm is an iterative E-M algorithm and will converge on a
* solution after some number of iterations that cannot be known a priori.
* After updating the filter, the total elapsed iterations taken to converge on
* the solution can be queried through GetElapsedIterations(). You may also
* specify a MaximumNumberOfIterations, after which the algorithm will stop
* iterating regardless of whether or not it has converged. This
* implementation of the STAPLE algorithm will find the solution to within
* seven digits of precision unless it is stopped early.
*
* Once updated, the Sensitivity (true positive fraction, q) and Specificity
* (true negative fraction, q) for each expert input volume can be queried
* using GetSensitivity(i) and GetSpecificity(i), where i is the i-th input
* volume.
*
* \par REQUIRED PARAMETERS
* The only required parameters for this filter are the ForegroundValue and the
* input volumes. All other parameters may be safely left to their default
* values. Please see the paper cited above for more information on the STAPLE
* algorithm and its parameters. A proper understanding of the algorithm is
* important for interpreting the results that it produces.
*
* \par EVENTS
* This filter invokes IterationEvent() at each iteration of the E-M
* algorithm. Setting the AbortGenerateData() flag will cause the algorithm to
* halt after the current iteration and produce results just as if it had
* converged. The algorithm makes no attempt to report its progress since the
* number of iterations needed cannot be known in advance.
* \ingroup ITKImageCompare
*/
template< typename TInputImage, typename TOutputImage >
class ITK_TEMPLATE_EXPORT STAPLEImageFilter:
public ImageToImageFilter< TInputImage, TOutputImage >
{
public:
/** Standard class typedefs. */
typedef STAPLEImageFilter Self;
typedef ImageToImageFilter< TInputImage, TOutputImage > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods) */
itkTypeMacro(STAPLEImageFilter, ImageToImageFilter);
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
typedef typename TOutputImage::PixelType OutputPixelType;
typedef typename TInputImage::PixelType InputPixelType;
typedef typename NumericTraits< InputPixelType >::RealType RealType;
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
itkStaticConstMacro(ImageDimension, unsigned int,
TOutputImage::ImageDimension);
/** Image typedef support */
typedef TInputImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointer;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointer;
/** Superclass typedefs. */
typedef typename Superclass::OutputImageRegionType OutputImageRegionType;
/** Set get the binary ON value of the input image. */
itkSetMacro(ForegroundValue, InputPixelType);
itkGetConstMacro(ForegroundValue, InputPixelType);
/** After the filter is updated, this method returns a std::vector<double> of
* all Specificity (true negative fraction, q) values for the expert
* input volumes. */
const std::vector< double > & GetSpecificity() const
{
return m_Specificity;
}
/** After the filter is updated, this method returns a std::vector<double> of
* all Sensitivity (true positive fraction, p) values for the expert input
* volumes. */
const std::vector< double > & GetSensitivity() const
{
return m_Sensitivity;
}
/** After the filter is updated, this method returns the Sensitivity (true
* positive fraction, p) value for the i-th expert input volume. */
double GetSensitivity(unsigned int i)
{
if ( i > this->GetNumberOfIndexedInputs() )
{
itkExceptionMacro(<< "Array reference out of bounds.");
}
return m_Sensitivity[i];
}
/** After the filter is updated, this method returns the Specificity (true
* negative fraction, q) value for the i-th expert input volume. */
double GetSpecificity(unsigned int i)
{
if ( i > this->GetNumberOfIndexedInputs() )
{
itkExceptionMacro(<< "Array reference out of bounds.");
}
return m_Specificity[i];
}
/** Set/Get the maximum number of iterations after which the STAPLE algorithm
* will be considered to have converged. In general this SHOULD NOT be set and
* the algorithm should be allowed to converge on its own. */
itkSetMacro(MaximumIterations, unsigned int);
itkGetConstMacro(MaximumIterations, unsigned int);
/** Scales the estimated prior probability that a pixel will be inside the
* targeted object of segmentation. The default prior probability g_t is
* calculated automatically as the average fraction of positively classified
* pixels to the total size of the volume (across all input volumes).
* ConfidenceWeight will scale this default value as g_t = g_t *
* ConfidenceWeight. In general, ConfidenceWeight should be left to the
* default of 1.0. */
itkSetMacro(ConfidenceWeight, double);
itkGetConstMacro(ConfidenceWeight, double);
/** Get the number of elapsed iterations of the iterative E-M algorithm. */
itkGetConstMacro(ElapsedIterations, unsigned int);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro( InputHasNumericTraitsCheck,
( Concept::HasNumericTraits< InputPixelType > ) );
// End concept checking
#endif
protected:
STAPLEImageFilter()
{
m_ForegroundValue = NumericTraits< InputPixelType >::OneValue();
m_MaximumIterations = NumericTraits< unsigned int >::max();
m_ElapsedIterations = 0;
m_ConfidenceWeight = 1.0;
}
virtual ~STAPLEImageFilter() ITK_OVERRIDE {}
void GenerateData() ITK_OVERRIDE;
void PrintSelf(std::ostream &, Indent) const ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(STAPLEImageFilter);
InputPixelType m_ForegroundValue;
unsigned int m_ElapsedIterations;
unsigned int m_MaximumIterations;
double m_ConfidenceWeight;
std::vector< double > m_Sensitivity;
std::vector< double > m_Specificity;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSTAPLEImageFilter.hxx"
#endif
#endif
|