1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSTAPLEImageFilter_hxx
#define itkSTAPLEImageFilter_hxx
#include "itkSTAPLEImageFilter.h"
#include "itkImageScanlineIterator.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
void
STAPLEImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "m_MaximumIterations = " << m_MaximumIterations << std::endl;
os << indent << "m_ForegroundValue = " << m_ForegroundValue << std::endl;
os << indent << "m_ConfidenceWeight = " << m_ConfidenceWeight << std::endl;
os << indent << "m_ElapsedIterations = " << m_ElapsedIterations << std::endl;
}
template< typename TInputImage, typename TOutputImage >
void
STAPLEImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
const double epsilon = 1.0e-10;
typedef ImageScanlineConstIterator< TInputImage > IteratorType;
typedef ImageScanlineIterator< TOutputImage > FuzzyIteratorType;
const double min_rms_error = 1.0e-14; // 7 digits of precision
unsigned int i, iter;
ProcessObject::DataObjectPointerArraySizeType number_of_input_files;
// Allocate the output "fuzzy" image.
this->GetOutput()->SetBufferedRegion( this->GetOutput()->GetRequestedRegion() );
this->GetOutput()->Allocate();
typename TOutputImage::Pointer W = this->GetOutput();
// Initialize the output to all 0's
W->FillBuffer( 0.0 );
// Record the number of input files.
number_of_input_files = this->GetNumberOfIndexedInputs();
IteratorType *D_it = new IteratorType[number_of_input_files];
double *p = new double[number_of_input_files]; // sensitivity
double *q = new double[number_of_input_files]; // specificity
double *last_q = new double[number_of_input_files];
double *last_p = new double[number_of_input_files];
for ( i = 0; i < number_of_input_files; ++i )
{
last_p[i] = -10.0;
last_q[i] = -10.0;
}
// Come up with an initial Wi which is simply the average of
// all the segmentations.
IteratorType in;
FuzzyIteratorType out;
for ( i = 0; i < number_of_input_files; ++i )
{
if ( this->GetInput(i)->GetRequestedRegion() != W->GetRequestedRegion() )
{
itkExceptionMacro(<< "One or more input images do not contain matching RequestedRegions");
}
in = IteratorType( this->GetInput(i), W->GetRequestedRegion() );
out = FuzzyIteratorType( W, W->GetRequestedRegion() );
while ( !in.IsAtEnd() )
{
while ( !in.IsAtEndOfLine() )
{
if ( in.Get() > m_ForegroundValue - epsilon && in.Get()
< m_ForegroundValue + epsilon )
{
out.Set(out.Get() + 1.0);
}
++in;
++out;
} // end scanline
in.NextLine();
out.NextLine();
} // end while
}
// Divide sum by num of files, calculate the estimate of g_t
double N = 0.0;
double g_t = 0.0;
out.GoToBegin();
while ( !out.IsAtEnd() )
{
while ( !out.IsAtEndOfLine() )
{
out.Set( out.Get() / static_cast< double >( number_of_input_files ) );
g_t += out.Get();
N = N + 1.0;
++out;
} // end of scanline
out.NextLine();
}
g_t = ( g_t / N ) * m_ConfidenceWeight;
double p_num, p_denom, q_num, q_denom;
for ( iter = 0; iter < m_MaximumIterations; ++iter )
{
// Now iterate on estimating specificity and sensitivity
for ( i = 0; i < number_of_input_files; ++i )
{
in = IteratorType( this->GetInput(i), W->GetRequestedRegion() );
out = FuzzyIteratorType( W, W->GetRequestedRegion() );
p_num = p_denom = q_num = q_denom = 0.0;
// Sensitivity and specificity of this user
while ( !in.IsAtEnd() )
{
while ( !in.IsAtEndOfLine() )
{
if ( in.Get() > m_ForegroundValue - epsilon
&& in.Get() < m_ForegroundValue + epsilon ) // Dij == 1
{
p_num += out.Get(); // out.Get() := Wi
}
else // if (in.Get() != m_ForegroundValue) // Dij == 0
{
q_num += ( 1.0 - out.Get() ); // out.Get() := Wi
}
p_denom += out.Get();
q_denom += ( 1.0 - out.Get() );
++in;
++out;
} // end of scanline
in.NextLine();
out.NextLine();
}
p[i] = p_num / p_denom;
q[i] = q_num / q_denom;
}
// Now recreate W using the new p's and q's
// Need an iterator on each D
// const double g_t = 0.1; // prior likelihood that a pixel is incl.in
// segmentation
double alpha1, beta1;
for ( i = 0; i < number_of_input_files; ++i )
{
D_it[i] = IteratorType( this->GetInput(i), W->GetRequestedRegion() );
}
out = FuzzyIteratorType( W, W->GetRequestedRegion() );
out.GoToBegin();
while ( !out.IsAtEnd())
{
while ( !out.IsAtEndOfLine() )
{
alpha1 = beta1 = 1.0;
for ( i = 0; i < number_of_input_files; ++i )
{
if ( D_it[i].Get() > m_ForegroundValue - epsilon && D_it[i].Get() < m_ForegroundValue + epsilon )
// Dij == 1
{
alpha1 = alpha1 * p[i];
beta1 = beta1 * ( 1.0 - q[i] );
}
else //Dij == 0
{
alpha1 = alpha1 * ( 1.0 - p[i] );
beta1 = beta1 * q[i];
}
++D_it[i];
}
out.Set( g_t * alpha1
/ ( g_t * alpha1 + ( 1.0 - g_t ) * beta1 ) );
++out;
} // end scanline
for ( i = 0; i < number_of_input_files; ++i )
{
D_it[i].NextLine();
}
out.NextLine();
}
this->InvokeEvent( IterationEvent() );
// Check for convergence
bool flag = false;
if ( iter != 0 ) // not on the first iteration
{
flag = true;
for ( i = 0; i < number_of_input_files; ++i )
{
if ( ( ( p[i] - last_p[i] ) * ( p[i] - last_p[i] ) ) > min_rms_error )
{
flag = false;
break;
}
if ( ( ( q[i] - last_q[i] ) * ( q[i] - last_q[i] ) ) > min_rms_error )
{
flag = false;
break;
}
}
}
for ( i = 0; i < number_of_input_files; ++i )
{
last_p[i] = p[i];
last_q[i] = q[i];
}
if ( this->GetAbortGenerateData() )
{
this->ResetPipeline();
flag = true;
}
if ( flag == true )
{
break;
}
}
// Copy p's, q's, etc. to member variables
m_Sensitivity.clear();
m_Specificity.clear();
for ( i = 0; i < number_of_input_files; i++ )
{
m_Sensitivity.push_back(p[i]);
m_Specificity.push_back(q[i]);
}
m_ElapsedIterations = iter;
delete[] q;
delete[] p;
delete[] last_q;
delete[] last_p;
delete[] D_it;
}
} // end namespace itk
#endif
|