File: itkBilateralImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (367 lines) | stat: -rw-r--r-- 12,539 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBilateralImageFilter_hxx
#define itkBilateralImageFilter_hxx

#include "itkBilateralImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkGaussianImageSource.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkProgressReporter.h"
#include "itkStatisticsImageFilter.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
BilateralImageFilter< TInputImage, TOutputImage >
::BilateralImageFilter()
{
  this->m_Radius.Fill(1);
  this->m_AutomaticKernelSize = true;
  this->m_DomainSigma.Fill(4.0);
  this->m_RangeSigma = 50.0;
  this->m_FilterDimensionality = ImageDimension;
  this->m_NumberOfRangeGaussianSamples = 100;
  this->m_DynamicRange = 0.0;
  this->m_DynamicRangeUsed = 0.0;
  this->m_DomainMu = 2.5;  // keep small to keep kernels small
  this->m_RangeMu = 4.0;   // can be bigger then DomainMu since we only
                           // index into a single table
}

template< typename TInputImage, typename TOutputImage >
void
BilateralImageFilter< TInputImage, TOutputImage >
::SetRadius(const SizeValueType i)
{
  m_Radius.Fill(i);
}

template< typename TInputImage, typename TOutputImage >
void
BilateralImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  typename Superclass::InputImagePointer inputPtr =
    const_cast< TInputImage * >( this->GetInput() );

  if ( !inputPtr )
    {
    return;
    }

  // Pad the image by 2.5*sigma in all directions
  typename TInputImage::SizeType radius;
  unsigned int i;

  if ( m_AutomaticKernelSize )
    {
    for ( i = 0; i < ImageDimension; i++ )
      {
      radius[i] =
        ( typename TInputImage::SizeType::SizeValueType )
        std::ceil(m_DomainMu * m_DomainSigma[i] / this->GetInput()->GetSpacing()[i]);
      }
    }
  else
    {
    for ( i = 0; i < ImageDimension; i++ )
      {
      radius[i] = m_Radius[i];
      }
    }

  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();

  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius(radius);

  // crop the input requested region at the input's largest possible region
  if ( inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() ) )
    {
    inputPtr->SetRequestedRegion(inputRequestedRegion);
    return;
    }
  else
    {
    // Couldn't crop the region (requested region is outside the largest
    // possible region).  Throw an exception.

    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion(inputRequestedRegion);

    // build an exception
    InvalidRequestedRegionError e(__FILE__, __LINE__);
    e.SetLocation(ITK_LOCATION);
    e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
    e.SetDataObject(inputPtr);
    throw e;
    }
}

template< typename TInputImage, typename TOutputImage >
void
BilateralImageFilter< TInputImage, TOutputImage >
::BeforeThreadedGenerateData()
{
  // Build a small image of the N-dimensional Gaussian used for domain filter
  //
  // Gaussian image size will be (2*std::ceil(2.5*sigma)+1) x
  // (2*std::ceil(2.5*sigma)+1)
  unsigned int i;

  typename InputImageType::SizeType radius;
  typename InputImageType::SizeType domainKernelSize;

  const InputImageType *inputImage = this->GetInput();

  const typename InputImageType::SpacingType inputSpacing = inputImage->GetSpacing();
  const typename InputImageType::PointType inputOrigin  = inputImage->GetOrigin();

  if ( m_AutomaticKernelSize )
    {
    for ( i = 0; i < ImageDimension; i++ )
      {
      radius[i] =
        ( typename TInputImage::SizeType::SizeValueType )
        std::ceil(m_DomainMu * m_DomainSigma[i] / inputSpacing[i]);
      domainKernelSize[i] = 2 * radius[i] + 1;
      }
    }
  else
    {
    for ( i = 0; i < ImageDimension; i++ )
      {
      radius[i] = m_Radius[i];
      domainKernelSize[i] = 2 * radius[i] + 1;
      }
    }

  typename GaussianImageSource< GaussianImageType >::Pointer gaussianImage;
  typename GaussianImageSource< GaussianImageType >::ArrayType mean;
  typename GaussianImageSource< GaussianImageType >::ArrayType sigma;

  gaussianImage = GaussianImageSource< GaussianImageType >::New();
  gaussianImage->SetSize( domainKernelSize );
  gaussianImage->SetSpacing(inputSpacing);
  gaussianImage->SetOrigin(inputOrigin);
  gaussianImage->SetScale(1.0);
  gaussianImage->SetNormalized(true);

  for ( i = 0; i < ImageDimension; i++ )
    {
    mean[i] = inputSpacing[i] * radius[i] + inputOrigin[i]; // center pixel pos
    sigma[i] = m_DomainSigma[i];
    }
  gaussianImage->SetSigma(sigma);
  gaussianImage->SetMean(mean);

  gaussianImage->Update();

  // copy this small Gaussian image into a neighborhood
  m_GaussianKernel.SetRadius(radius);

  KernelIteratorType                       kernel_it;
  ImageRegionIterator< GaussianImageType > git =
    ImageRegionIterator< GaussianImageType >( gaussianImage->GetOutput(),
                                              gaussianImage->GetOutput()
                                              ->GetBufferedRegion() );
  double norm = 0.0;
  for ( git.GoToBegin(); !git.IsAtEnd(); ++git )
    {
    norm += git.Get();
    }
  for ( git.GoToBegin(), kernel_it = m_GaussianKernel.Begin(); !git.IsAtEnd();
        ++git, ++kernel_it )
    {
    *kernel_it = git.Get() / norm;
    }

  // Build a lookup table for the range gaussian
  //
  //

  // First, determine the min and max intensity range
  typename StatisticsImageFilter< TInputImage >::Pointer statistics =
    StatisticsImageFilter< TInputImage >::New();

  statistics->SetInput(inputImage);
  statistics->GetOutput()
  ->SetRequestedRegion( this->GetOutput()->GetRequestedRegion() );
  statistics->Update();

  // Now create the lookup table whose domain runs from 0.0 to
  // (max-min) and range is gaussian evaluated at
  // that point
  //
  double rangeVariance = m_RangeSigma * m_RangeSigma;

  // denominator (normalization factor) for Gaussian used for range
  double rangeGaussianDenom;
  rangeGaussianDenom = m_RangeSigma * std::sqrt(2.0 * itk::Math::pi);

  // Maximum delta for the dynamic range
  double tableDelta;
  double v;

  m_DynamicRange = ( static_cast< double >( statistics->GetMaximum() )
                     - static_cast< double >( statistics->GetMinimum() ) );

  m_DynamicRangeUsed = m_RangeMu * m_RangeSigma;

  tableDelta = m_DynamicRangeUsed
               / static_cast< double >( m_NumberOfRangeGaussianSamples );

  // Finally, build the table
  m_RangeGaussianTable.resize(m_NumberOfRangeGaussianSamples);
  for ( i = 0, v = 0.0; i < m_NumberOfRangeGaussianSamples;
        ++i, v += tableDelta )
    {
    m_RangeGaussianTable[i] = std::exp(-0.5 * v * v / rangeVariance) / rangeGaussianDenom;
    }
}

template< typename TInputImage, typename TOutputImage >
void
BilateralImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  typename TInputImage::ConstPointer input = this->GetInput();
  typename TOutputImage::Pointer output = this->GetOutput();
  typename TInputImage::IndexValueType i;
  const double  rangeDistanceThreshold = m_DynamicRangeUsed;

  // Now we are ready to bilateral filter!
  //
  //
  //

  // Boundary condition
  ZeroFluxNeumannBoundaryCondition< TInputImage > BC;

  // Find the boundary "faces"
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType >::FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType > fC;
  faceList = fC( this->GetInput(), outputRegionForThread,
                 m_GaussianKernel.GetRadius() );

  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType >::FaceListType::iterator fit;

  OutputPixelRealType centerPixel;
  OutputPixelRealType val, tableArg, normFactor, rangeGaussian,
                      rangeDistance, pixel, gaussianProduct;

  const double distanceToTableIndex =
    static_cast< double >( m_NumberOfRangeGaussianSamples ) / m_DynamicRangeUsed;

  // Process all the faces, the NeighborhoodIterator will deteremine
  // whether a specified region needs to use the boundary conditions or
  // not.
  NeighborhoodIteratorType               b_iter;
  ImageRegionIterator< OutputImageType > o_iter;
  KernelConstIteratorType                k_it;
  KernelConstIteratorType                kernelEnd = m_GaussianKernel.End();

  ProgressReporter progress( this, threadId, outputRegionForThread.GetNumberOfPixels() );

  for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
    {
    // walk the boundary face and the corresponding section of the output
    b_iter = NeighborhoodIteratorType(m_GaussianKernel.GetRadius(),
                                      this->GetInput(), *fit);
    b_iter.OverrideBoundaryCondition(&BC);
    o_iter = ImageRegionIterator< OutputImageType >(this->GetOutput(), *fit);

    while ( !b_iter.IsAtEnd() )
      {
      // Setup
      centerPixel = static_cast< OutputPixelRealType >( b_iter.GetCenterPixel() );
      val = 0.0;
      normFactor = 0.0;

      // Walk the neighborhood of the input and the kernel
      for ( i = 0, k_it = m_GaussianKernel.Begin(); k_it < kernelEnd;
            ++k_it, ++i )
        {
        // range distance between neighborhood pixel and neighborhood center
        pixel = static_cast< OutputPixelRealType >( b_iter.GetPixel(i) );
        rangeDistance = pixel - centerPixel;
        // flip sign if needed
        if ( rangeDistance < 0.0 )
          {
          rangeDistance *= -1.0;
          }

        // if the range distance is close enough, then use the pixel
        if ( rangeDistance < rangeDistanceThreshold )
          {
          // look up the range gaussian in a table
          tableArg = rangeDistance * distanceToTableIndex;
          rangeGaussian = m_RangeGaussianTable[Math::Floor < SizeValueType > ( tableArg )];

          // normalization factor so filter integrates to one
          // (product of the domain and the range gaussian)
          gaussianProduct = ( *k_it ) * rangeGaussian;
          normFactor += gaussianProduct;

          // Input Image * Domain Gaussian * Range Gaussian
          val += pixel * gaussianProduct;
          }
        }
      // normalize the value
      val /= normFactor;

      // store the filtered value
      o_iter.Set( static_cast< OutputPixelType >( val ) );

      ++b_iter;
      ++o_iter;
      progress.CompletedPixel();
      }
    }
}

template< typename TInputImage, typename TOutputImage >
void
BilateralImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "DomainSigma: " << m_DomainSigma << std::endl;
  os << indent << "RangeSigma: " << m_RangeSigma << std::endl;
  os << indent << "FilterDimensionality: " << m_FilterDimensionality << std::endl;
  os << indent << "NumberOfRangeGaussianSamples: " << m_NumberOfRangeGaussianSamples << std::endl;
  os << indent << "Input dynamic range: " << m_DynamicRange << std::endl;
  os << indent << "Amount of dynamic range used: " << m_DynamicRangeUsed << std::endl;
  os << indent << "AutomaticKernelSize: " << m_AutomaticKernelSize << std::endl;
  os << indent << "Radius: " << m_Radius << std::endl;
}
} // end namespace itk

#endif