File: itkLaplacianRecursiveGaussianImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (278 lines) | stat: -rw-r--r-- 9,140 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLaplacianRecursiveGaussianImageFilter_hxx
#define itkLaplacianRecursiveGaussianImageFilter_hxx

#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"
#include "itkCastImageFilter.h"
#include "itkAddImageFilter.h"

namespace itk
{
/**
 * Constructor
 */
template< typename TInputImage, typename TOutputImage >
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::LaplacianRecursiveGaussianImageFilter()
{
  m_NormalizeAcrossScale = false;

  for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
    {
    m_SmoothingFilters[i] = GaussianFilterType::New();
    m_SmoothingFilters[i]->SetOrder(GaussianFilterType::ZeroOrder);
    m_SmoothingFilters[i]->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
    m_SmoothingFilters[i]->ReleaseDataFlagOn();
    m_SmoothingFilters[i]->InPlaceOn();
    }

  m_DerivativeFilter = DerivativeFilterType::New();
  m_DerivativeFilter->SetOrder(DerivativeFilterType::SecondOrder);
  m_DerivativeFilter->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
  m_DerivativeFilter->ReleaseDataFlagOn();
  m_DerivativeFilter->InPlaceOff();

  m_DerivativeFilter->SetInput( this->GetInput() );

  m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );

  if ( NumberOfSmoothingFilters > 1 )
    {
    for ( unsigned int i = 1; i < NumberOfSmoothingFilters; i++ )
      {
      m_SmoothingFilters[i]->SetInput(
        m_SmoothingFilters[i - 1]->GetOutput() );
      }
    }

  this->SetSigma(1.0);
}

/**
 * Set value of Sigma
 */
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetSigma(RealType sigma)
{
  for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
    {
    m_SmoothingFilters[i]->SetSigma(sigma);
    }
  m_DerivativeFilter->SetSigma(sigma);

  this->Modified();
}

/**
 * Get value of Sigma
 */
template< typename TInputImage, typename TOutputImage >
typename LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >::RealType
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GetSigma() const
{
  return m_DerivativeFilter->GetSigma();
}

/**
 * Set Normalize Across Scale Space
 */
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetNormalizeAcrossScale(bool normalize)
{
  m_NormalizeAcrossScale = normalize;

  for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
    {
    m_SmoothingFilters[i]->SetNormalizeAcrossScale(normalize);
    }
  m_DerivativeFilter->SetNormalizeAcrossScale(normalize);

  this->Modified();
}


//
//
//
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *output)
{
  TOutputImage *out = dynamic_cast< TOutputImage * >( output );

  if ( out )
    {
    out->SetRequestedRegion( out->GetLargestPossibleRegion() );
    }
}

/**
 * Compute filter for Gaussian kernel
 */
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateData(void)
{
  itkDebugMacro(<< "LaplacianRecursiveGaussianImageFilter generating data ");

  // Set the number of threads on all the filters
  for ( unsigned int i = 0; i < ImageDimension - 1; i++ )
    {
      m_SmoothingFilters[i]->SetNumberOfThreads(this->GetNumberOfThreads());
    }
  m_DerivativeFilter->SetNumberOfThreads(this->GetNumberOfThreads());

  // Create a process accumulator for tracking the progress of minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // dim^2 recursive gaussians + dim add filters + cast filter
  const unsigned int numberOfFilters = ( ImageDimension * ImageDimension ) +  ImageDimension + 1;

  // register (most) filters with the progress accumulator
  for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
    {
    progress->RegisterInternalFilter(m_SmoothingFilters[i],  1.0 / numberOfFilters );
    }
  progress->RegisterInternalFilter(m_DerivativeFilter,   1.0 / numberOfFilters );

  const typename TInputImage::ConstPointer inputImage( this->GetInput() );

  // initialize output image
  //
  // NOTE: We intentionally don't allocate the output image here,
  // because the cast image filter will either run inplace, or alloate
  // the output there. The requested region has already been set in
  // ImageToImageFilter::GenerateInputImageFilter.
  typename TOutputImage::Pointer outputImage( this->GetOutput() );
  //outputImage->Allocate(); let the CasterImageFilter allocate the image

  //  Auxiliary image for accumulating the second-order derivatives
  typedef Image< InternalRealType, itkGetStaticConstMacro(ImageDimension) > CumulativeImageType;
  typedef typename CumulativeImageType::Pointer CumulativeImagePointer;

  // The CastImageFilter is used because it is multithreaded and
  // it may perform no operation if the two images types are the same
  typedef itk::CastImageFilter< CumulativeImageType, OutputImageType > CastFilterType;
  typename CastFilterType::Pointer caster = CastFilterType::New();
    caster->SetNumberOfThreads(this->GetNumberOfThreads());

  // If the last filter is running in-place then this bulk data is not
  // needed, release it to save memory
  if ( caster->CanRunInPlace() )
    {
    outputImage->ReleaseData();
    }


  CumulativeImagePointer cumulativeImage = CumulativeImageType::New();
  cumulativeImage->SetRegions( outputImage->GetRequestedRegion() );
  cumulativeImage->CopyInformation( inputImage );
  cumulativeImage->Allocate();
  cumulativeImage->FillBuffer(NumericTraits< InternalRealType >::ZeroValue());

  m_DerivativeFilter->SetInput(inputImage);

  // allocate the add and scale image filter just for the scope of
  // this function!
  typedef itk::BinaryFunctorImageFilter< CumulativeImageType, RealImageType, CumulativeImageType, AddMultConstFunctor > AddFilterType;
  typename AddFilterType::Pointer addFilter = AddFilterType::New();
  addFilter->SetNumberOfThreads(this->GetNumberOfThreads());

  // register with progress accumulator
  progress->RegisterInternalFilter( addFilter,   1.0 / numberOfFilters );


  for ( unsigned int dim = 0; dim < ImageDimension; dim++ )
    {
    unsigned int i = 0;
    unsigned int j = 0;
    while (  i < NumberOfSmoothingFilters )
      {
      if ( i == dim )
        {
        j++;
        }
      m_SmoothingFilters[i]->SetDirection(j);
      i++;
      j++;
      }
    m_DerivativeFilter->SetDirection(dim);

    GaussianFilterPointer lastFilter = m_SmoothingFilters[ImageDimension - 2];

    // scale the new value by the inverse of the spacing squared
    const RealType spacing2 = itk::Math::sqr( inputImage->GetSpacing()[dim] );
    addFilter->GetFunctor().m_Value = 1.0/spacing2;

    // Cummulate the results on the output image
    addFilter->SetInput1( cumulativeImage );
    addFilter->SetInput2( lastFilter->GetOutput() );
    addFilter->InPlaceOn();
    addFilter->Update();

    cumulativeImage = addFilter->GetOutput();
    cumulativeImage->DisconnectPipeline();
    }

  // Because the output of last filter in the mini-pipeline is not
  // pipelined the data must be manually released
  if ( ImageDimension > 1 )
    {
    m_SmoothingFilters[ImageDimension - 2]->GetOutput()->ReleaseData();
    }
  else
    {
    m_DerivativeFilter->GetOutput()->ReleaseData();
    }

  // Finally convert the cumulated image to the output with a caster
  caster->SetInput( cumulativeImage );

  // register with progress accumulator
  progress->RegisterInternalFilter( caster,   1.0 / numberOfFilters );

  // graft the our output to the casted output to share the
  // output bulk-data, meta-information and regions, then update the
  // requested image
  caster->GraftOutput( outputImage );
  caster->Update();
  this->GraftOutput( caster->GetOutput() );
}

template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
}
} // end namespace itk

#endif