1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLaplacianRecursiveGaussianImageFilter_hxx
#define itkLaplacianRecursiveGaussianImageFilter_hxx
#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"
#include "itkCastImageFilter.h"
#include "itkAddImageFilter.h"
namespace itk
{
/**
* Constructor
*/
template< typename TInputImage, typename TOutputImage >
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::LaplacianRecursiveGaussianImageFilter()
{
m_NormalizeAcrossScale = false;
for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
{
m_SmoothingFilters[i] = GaussianFilterType::New();
m_SmoothingFilters[i]->SetOrder(GaussianFilterType::ZeroOrder);
m_SmoothingFilters[i]->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
m_SmoothingFilters[i]->ReleaseDataFlagOn();
m_SmoothingFilters[i]->InPlaceOn();
}
m_DerivativeFilter = DerivativeFilterType::New();
m_DerivativeFilter->SetOrder(DerivativeFilterType::SecondOrder);
m_DerivativeFilter->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
m_DerivativeFilter->ReleaseDataFlagOn();
m_DerivativeFilter->InPlaceOff();
m_DerivativeFilter->SetInput( this->GetInput() );
m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );
if ( NumberOfSmoothingFilters > 1 )
{
for ( unsigned int i = 1; i < NumberOfSmoothingFilters; i++ )
{
m_SmoothingFilters[i]->SetInput(
m_SmoothingFilters[i - 1]->GetOutput() );
}
}
this->SetSigma(1.0);
}
/**
* Set value of Sigma
*/
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetSigma(RealType sigma)
{
for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
{
m_SmoothingFilters[i]->SetSigma(sigma);
}
m_DerivativeFilter->SetSigma(sigma);
this->Modified();
}
/**
* Get value of Sigma
*/
template< typename TInputImage, typename TOutputImage >
typename LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >::RealType
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GetSigma() const
{
return m_DerivativeFilter->GetSigma();
}
/**
* Set Normalize Across Scale Space
*/
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetNormalizeAcrossScale(bool normalize)
{
m_NormalizeAcrossScale = normalize;
for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
{
m_SmoothingFilters[i]->SetNormalizeAcrossScale(normalize);
}
m_DerivativeFilter->SetNormalizeAcrossScale(normalize);
this->Modified();
}
//
//
//
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *output)
{
TOutputImage *out = dynamic_cast< TOutputImage * >( output );
if ( out )
{
out->SetRequestedRegion( out->GetLargestPossibleRegion() );
}
}
/**
* Compute filter for Gaussian kernel
*/
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateData(void)
{
itkDebugMacro(<< "LaplacianRecursiveGaussianImageFilter generating data ");
// Set the number of threads on all the filters
for ( unsigned int i = 0; i < ImageDimension - 1; i++ )
{
m_SmoothingFilters[i]->SetNumberOfThreads(this->GetNumberOfThreads());
}
m_DerivativeFilter->SetNumberOfThreads(this->GetNumberOfThreads());
// Create a process accumulator for tracking the progress of minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// dim^2 recursive gaussians + dim add filters + cast filter
const unsigned int numberOfFilters = ( ImageDimension * ImageDimension ) + ImageDimension + 1;
// register (most) filters with the progress accumulator
for ( unsigned int i = 0; i < NumberOfSmoothingFilters; i++ )
{
progress->RegisterInternalFilter(m_SmoothingFilters[i], 1.0 / numberOfFilters );
}
progress->RegisterInternalFilter(m_DerivativeFilter, 1.0 / numberOfFilters );
const typename TInputImage::ConstPointer inputImage( this->GetInput() );
// initialize output image
//
// NOTE: We intentionally don't allocate the output image here,
// because the cast image filter will either run inplace, or alloate
// the output there. The requested region has already been set in
// ImageToImageFilter::GenerateInputImageFilter.
typename TOutputImage::Pointer outputImage( this->GetOutput() );
//outputImage->Allocate(); let the CasterImageFilter allocate the image
// Auxiliary image for accumulating the second-order derivatives
typedef Image< InternalRealType, itkGetStaticConstMacro(ImageDimension) > CumulativeImageType;
typedef typename CumulativeImageType::Pointer CumulativeImagePointer;
// The CastImageFilter is used because it is multithreaded and
// it may perform no operation if the two images types are the same
typedef itk::CastImageFilter< CumulativeImageType, OutputImageType > CastFilterType;
typename CastFilterType::Pointer caster = CastFilterType::New();
caster->SetNumberOfThreads(this->GetNumberOfThreads());
// If the last filter is running in-place then this bulk data is not
// needed, release it to save memory
if ( caster->CanRunInPlace() )
{
outputImage->ReleaseData();
}
CumulativeImagePointer cumulativeImage = CumulativeImageType::New();
cumulativeImage->SetRegions( outputImage->GetRequestedRegion() );
cumulativeImage->CopyInformation( inputImage );
cumulativeImage->Allocate();
cumulativeImage->FillBuffer(NumericTraits< InternalRealType >::ZeroValue());
m_DerivativeFilter->SetInput(inputImage);
// allocate the add and scale image filter just for the scope of
// this function!
typedef itk::BinaryFunctorImageFilter< CumulativeImageType, RealImageType, CumulativeImageType, AddMultConstFunctor > AddFilterType;
typename AddFilterType::Pointer addFilter = AddFilterType::New();
addFilter->SetNumberOfThreads(this->GetNumberOfThreads());
// register with progress accumulator
progress->RegisterInternalFilter( addFilter, 1.0 / numberOfFilters );
for ( unsigned int dim = 0; dim < ImageDimension; dim++ )
{
unsigned int i = 0;
unsigned int j = 0;
while ( i < NumberOfSmoothingFilters )
{
if ( i == dim )
{
j++;
}
m_SmoothingFilters[i]->SetDirection(j);
i++;
j++;
}
m_DerivativeFilter->SetDirection(dim);
GaussianFilterPointer lastFilter = m_SmoothingFilters[ImageDimension - 2];
// scale the new value by the inverse of the spacing squared
const RealType spacing2 = itk::Math::sqr( inputImage->GetSpacing()[dim] );
addFilter->GetFunctor().m_Value = 1.0/spacing2;
// Cummulate the results on the output image
addFilter->SetInput1( cumulativeImage );
addFilter->SetInput2( lastFilter->GetOutput() );
addFilter->InPlaceOn();
addFilter->Update();
cumulativeImage = addFilter->GetOutput();
cumulativeImage->DisconnectPipeline();
}
// Because the output of last filter in the mini-pipeline is not
// pipelined the data must be manually released
if ( ImageDimension > 1 )
{
m_SmoothingFilters[ImageDimension - 2]->GetOutput()->ReleaseData();
}
else
{
m_DerivativeFilter->GetOutput()->ReleaseData();
}
// Finally convert the cumulated image to the output with a caster
caster->SetInput( cumulativeImage );
// register with progress accumulator
progress->RegisterInternalFilter( caster, 1.0 / numberOfFilters );
// graft the our output to the casted output to share the
// output bulk-data, meta-information and regions, then update the
// requested image
caster->GraftOutput( outputImage );
caster->Update();
this->GraftOutput( caster->GetOutput() );
}
template< typename TInputImage, typename TOutputImage >
void
LaplacianRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
}
} // end namespace itk
#endif
|