1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLaplacianSharpeningImageFilter_hxx
#define itkLaplacianSharpeningImageFilter_hxx
#include "itkLaplacianSharpeningImageFilter.h"
#include "itkNeighborhoodOperatorImageFilter.h"
#include "itkLaplacianOperator.h"
#include "itkProgressAccumulator.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkImageRegionIterator.h"
namespace itk
{
template< typename TInputImage, typename TOutputImage >
void
LaplacianSharpeningImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "UseImageSpacing = " << m_UseImageSpacing << std::endl;
}
template< typename TInputImage, typename TOutputImage >
void
LaplacianSharpeningImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method. This should
// copy the output requested region to the input requested region
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
InputImagePointer inputPtr =
const_cast< TInputImage * >( this->GetInput() );
if ( !inputPtr )
{
return;
}
// Build an operator so that we can determine the kernel size
LaplacianOperator< RealType, ImageDimension > oper;
oper.CreateOperator();
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by the operator radius
inputRequestedRegion.PadByRadius( oper.GetRadius() );
// crop the input requested region at the input's largest possible region
if ( inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() ) )
{
inputPtr->SetRequestedRegion(inputRequestedRegion);
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion(inputRequestedRegion);
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
e.SetLocation(ITK_LOCATION);
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template< typename TInputImage, typename TOutputImage >
void
LaplacianSharpeningImageFilter< TInputImage, TOutputImage >
::GenerateData()
{
// Create the Laplacian operator
LaplacianOperator< RealType, ImageDimension > oper;
double s[ImageDimension];
for ( unsigned i = 0; i < ImageDimension; i++ )
{
if ( this->GetInput()->GetSpacing()[i] == 0.0 )
{
itkExceptionMacro(<< "Image spacing cannot be zero");
}
else
{
s[i] = 1.0 / this->GetInput()->GetSpacing()[i];
}
}
oper.SetDerivativeScalings(s);
oper.CreateOperator();
// do calculations in floating point
typedef Image< RealType, ImageDimension > RealImageType;
typedef NeighborhoodOperatorImageFilter< InputImageType, RealImageType > NOIF;
ZeroFluxNeumannBoundaryCondition< InputImageType > nbc;
typename NOIF::Pointer filter = NOIF::New();
filter->OverrideBoundaryCondition( static_cast< typename NOIF::ImageBoundaryConditionPointerType >( &nbc ) );
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// Register the filter with the with progress accumulator using
// equal weight proportion
progress->RegisterInternalFilter(filter, 0.8f);
//
// set up the mini-pipline
//
filter->SetOperator(oper);
filter->SetInput( this->GetInput() );
filter->GetOutput()
->SetRequestedRegion( this->GetOutput()->GetRequestedRegion() );
// execute the mini-pipeline
filter->Update();
// determine how the data will need to scaled to be properly combined
typename MinimumMaximumImageCalculator< InputImageType >::Pointer inputCalculator =
MinimumMaximumImageCalculator< InputImageType >::New();
typename MinimumMaximumImageCalculator< RealImageType >::Pointer filteredCalculator =
MinimumMaximumImageCalculator< RealImageType >::New();
inputCalculator->SetImage( this->GetInput() );
inputCalculator->SetRegion( this->GetOutput()->GetRequestedRegion() );
inputCalculator->Compute();
filteredCalculator->SetImage( filter->GetOutput() );
filteredCalculator->SetRegion( this->GetOutput()->GetRequestedRegion() );
filteredCalculator->Compute();
RealType inputShift, inputScale, filteredShift, filteredScale;
inputShift = static_cast< RealType >( inputCalculator->GetMinimum() );
inputScale = static_cast< RealType >( inputCalculator->GetMaximum() )
- static_cast< RealType >( inputCalculator->GetMinimum() );
filteredShift = filteredCalculator->GetMinimum(); // no need to cast
filteredScale = filteredCalculator->GetMaximum()
- filteredCalculator->GetMinimum();
ImageRegionIterator< RealImageType >
it( filter->GetOutput(), filter->GetOutput()->GetRequestedRegion() );
ImageRegionConstIterator< InputImageType >
inIt( this->GetInput(), this->GetOutput()->GetRequestedRegion() );
// combine the input and laplacian images
RealType value, invalue;
RealType inputSum = 0.0;
RealType enhancedSum = 0.0;
while ( !it.IsAtEnd() )
{
value = it.Get(); // laplacian value
// rescale to [0,1]
value = ( value - filteredShift ) / filteredScale;
// rescale to the input dynamic range
value = value * inputScale + inputShift;
// combine the input and laplacian image (note that we subtract
// the laplacian due to the signs in our laplacian kernel).
invalue = static_cast< RealType >( inIt.Get() );
value = invalue - value;
it.Set(value);
inputSum += invalue;
enhancedSum += value;
++it;
++inIt;
}
RealType inputMean = inputSum
/ static_cast< RealType >( this->GetOutput()->GetRequestedRegion()
.GetNumberOfPixels() );
RealType enhancedMean = enhancedSum
/ static_cast< RealType >( this->GetOutput()->GetRequestedRegion()
.GetNumberOfPixels() );
// update progress
this->UpdateProgress(0.9);
// copy and cast the output
typename TOutputImage::Pointer output = this->GetOutput();
output->SetBufferedRegion( output->GetRequestedRegion() );
output->Allocate();
RealType inputMinimum = inputCalculator->GetMinimum();
RealType inputMaximum = inputCalculator->GetMaximum();
OutputPixelType castInputMinimum =
static_cast< OutputPixelType >( inputMinimum );
OutputPixelType castInputMaximum =
static_cast< OutputPixelType >( inputMaximum );
ImageRegionIterator< OutputImageType > outIt =
ImageRegionIterator< OutputImageType >( output,
output->GetRequestedRegion() );
outIt.GoToBegin();
it.GoToBegin();
while ( !outIt.IsAtEnd() )
{
value = it.Get();
// adjust value to make the mean intensities before and after match
value = value - enhancedMean + inputMean;
if ( value < inputMinimum )
{
outIt.Set(castInputMinimum);
}
else if ( value > inputMaximum )
{
outIt.Set(castInputMaximum);
}
else
{
outIt.Set( static_cast< OutputPixelType >( value ) );
}
++outIt;
++it;
}
// update progress
this->UpdateProgress(1.0);
}
} // end namespace itk
#endif
|