1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMaskFeaturePointSelectionFilter_hxx
#define itkMaskFeaturePointSelectionFilter_hxx
#include <map>
#include "vnl/vnl_trace.h"
#include "itkMaskFeaturePointSelectionFilter.h"
#include "itkNeighborhood.h"
#include "itkNumericTraits.h"
#include "itkImageRegionIterator.h"
#include "itkCompensatedSummation.h"
namespace itk
{
template< typename TImage, typename TMask, typename TFeatures >
MaskFeaturePointSelectionFilter< TImage, TMask, TFeatures >
::MaskFeaturePointSelectionFilter()
{
// default parameters
m_NonConnectivity = Self::VERTEX_CONNECTIVITY;
m_SelectFraction = 0.1;
m_BlockRadius.Fill( 2 );
m_ComputeStructureTensors = true;
}
template< typename TImage, typename TMask, typename TFeatures >
MaskFeaturePointSelectionFilter< TImage, TMask, TFeatures >
::~MaskFeaturePointSelectionFilter()
{
}
template< typename TImage, typename TMask, typename TFeatures >
void
MaskFeaturePointSelectionFilter< TImage, TMask, TFeatures >
::PrintSelf( std::ostream & os, Indent indent ) const
{
Superclass::PrintSelf( os, indent );
os << indent << "m_NonConnectivity: ";
switch ( m_NonConnectivity )
{
case 0:
os << "VERTEX_CONNECTIVITY";
break;
case 1:
os << "EDGE_CONNECTIVITY";
break;
case 2:
os << "FACE_CONNECTIVITY";
break;
default:
os << static_cast< unsigned >( m_NonConnectivity );
}
os << std::endl
<< indent << "m_BlockRadius: " << m_BlockRadius << std::endl
<< indent << "m_ComputeStructureTensors: " << ( m_ComputeStructureTensors ? "yes" : "no" ) << std::endl
<< indent << "m_SelectFraction: " << m_SelectFraction << std::endl;
}
template< typename TImage, typename TMask, typename TFeatures >
void
MaskFeaturePointSelectionFilter< TImage, TMask, TFeatures >
::ComputeConnectivityOffsets( void )
{
if ( m_NonConnectivity < ImageDimension )
{
m_NonConnectivityOffsets.clear();
// use Neighbourhood to compute all offsets in radius 1
Neighborhood< unsigned, ImageDimension> neighborhood;
neighborhood.SetRadius( NumericTraits< SizeValueType >::OneValue() );
for ( SizeValueType i = 0, n = neighborhood.Size(); i < n; i++ )
{
OffsetType off = neighborhood.GetOffset( i );
// count 0s offsets in each dimension
unsigned numberOfZeros = 0;
for ( unsigned j = 0; j < ImageDimension; j++ )
{
if ( off[ j ] == 0 )
{
numberOfZeros++;
}
}
if ( m_NonConnectivity <= numberOfZeros && numberOfZeros < ImageDimension )
{
m_NonConnectivityOffsets.push_back( off );
}
}
}
else
{
itkExceptionMacro( "Cannot use non-connectivity of value " << m_NonConnectivity
<< ", expected a value in the range 0.." << ImageDimension - 1 << "." );
}
}
template< typename TImage, typename TMask, typename TFeatures >
void
MaskFeaturePointSelectionFilter< TImage, TMask, TFeatures >
::GenerateData()
{
// generate non-connectivity offsets
this->ComputeConnectivityOffsets();
// fill inputs / outputs / misc
const TImage * image = this->GetInput();
RegionType region = image->GetLargestPossibleRegion();
typename ImageType::SpacingType voxelSpacing = image->GetSpacing();
FeaturePointsPointer pointSet = this->GetOutput();
typedef typename FeaturePointsType::PointsContainer PointsContainer;
typedef typename PointsContainer::Pointer PointsContainerPointer;
PointsContainerPointer points = PointsContainer::New();
typedef typename FeaturePointsType::PointDataContainer PointDataContainer;
typedef typename PointDataContainer::Pointer PointDataContainerPointer;
PointDataContainerPointer pointData = PointDataContainer::New();
// initialize selectionMap
typedef unsigned char MapPixelType;
typedef Image< MapPixelType, ImageDimension> SelectionMapType;
typename SelectionMapType::Pointer selectionMap = SelectionMapType::New();
// The selectionMap only needs to have the same pixel grid of the input image,
// but do not have to care about origin, spacing or orientation.
selectionMap->SetRegions( region );
selectionMap->Allocate();
const TMask * mask = this->GetMaskImage();
if ( mask == ITK_NULLPTR )
{
// create all 1s selectionMap
selectionMap->FillBuffer( NumericTraits< MapPixelType >::OneValue() );
}
else
{
// copy mask into selectionMap
ImageRegionConstIterator< MaskType > maskItr( mask, region );
ImageRegionIterator< SelectionMapType > mapItr( selectionMap, region );
for ( maskItr.GoToBegin(), mapItr.GoToBegin(); !maskItr.IsAtEnd(); ++maskItr, ++mapItr )
{
mapItr.Set( static_cast< MapPixelType >( maskItr.Get() ) );
}
}
// set safe region for picking feature points depending on whether tensors are computed
IndexType safeIndex = region.GetIndex();
SizeType safeSize = region.GetSize();
if ( m_ComputeStructureTensors )
{
// tensor calculations access points in 2 X m_BlockRadius + 1 radius
SizeType onesSize;
onesSize.Fill( 1 );
// Define the area in which tensors are going to be computed.
const SizeType blockSize = m_BlockRadius + m_BlockRadius + onesSize;
safeIndex += blockSize;
safeSize -= blockSize + blockSize;
}
else
{
// variance calculations access points in m_BlockRadius radius
safeIndex += m_BlockRadius;
safeSize -= m_BlockRadius + m_BlockRadius;
}
region.SetIndex( safeIndex );
region.SetSize( safeSize );
// iterators for variance computing loop
ImageRegionIterator< SelectionMapType > mapItr( selectionMap, region );
ConstNeighborhoodIterator< ImageType > imageItr( m_BlockRadius, image, region );
typedef typename ConstNeighborhoodIterator< ImageType >::NeighborIndexType NeighborSizeType;
NeighborSizeType numPixelsInNeighborhood = imageItr.Size();
// sorted container for feature points, stores pair(variance, index)
typedef std::multimap< double, IndexType > MultiMapType;
MultiMapType pointMap;
// compute variance for eligible points
for ( imageItr.GoToBegin(), mapItr.GoToBegin(); !imageItr.IsAtEnd(); ++imageItr, ++mapItr )
{
if ( mapItr.Get() )
{
CompensatedSummation< double > sum;
CompensatedSummation< double > sumOfSquares;
for ( NeighborSizeType i = 0; i < numPixelsInNeighborhood; i++ )
{
const ImagePixelType pixel = imageItr.GetPixel( i );
sum += pixel;
sumOfSquares += pixel * pixel;
}
const double mean = sum.GetSum() / numPixelsInNeighborhood;
const double squaredMean = mean * mean;
const double meanOfSquares = sumOfSquares.GetSum() / numPixelsInNeighborhood;
const double variance = meanOfSquares - squaredMean;
typedef typename MultiMapType::value_type PairType;
// we only insert blocks with variance > 0
if(itk::NumericTraits<double>::IsPositive(variance))
{
pointMap.insert( PairType( variance, imageItr.GetIndex() ) );
}
}
}
// number of points to select
IndexValueType numberOfPointsInserted = -1; // initialize to -1
IndexValueType maxNumberPointsToInserted = Math::Floor<SizeValueType>( 0.5 + pointMap.size() * m_SelectFraction );
const double TRACE_EPSILON = 1e-8;
// pick points with highest variance first (inverse iteration)
typedef typename MultiMapType::reverse_iterator MapReverseIterator;
MapReverseIterator rit = pointMap.rbegin();
while ( rit != pointMap.rend() && numberOfPointsInserted < maxNumberPointsToInserted)
{
// if point is not marked off in selection map and there are still points to be picked
const IndexType & indexOfPointToPick = rit->second;
// index should be inside the mask image (GetPixel = 1)
if ( selectionMap->GetPixel( indexOfPointToPick ) && region.IsInside(indexOfPointToPick) )
{
numberOfPointsInserted++;
// compute and add structure tensor into pointData
if ( m_ComputeStructureTensors )
{
StructureTensorType tensor;
tensor.Fill( 0 );
Matrix < SpacePrecisionType, ImageDimension, 1 > gradI; // vector declared as column matrix
SizeType radius;
radius.Fill( 1 ); // iterate over neighbourhood of a voxel
RegionType center;
center.SetSize( radius );
center.SetIndex( indexOfPointToPick );
SizeType neighborRadiusForTensor = m_BlockRadius + m_BlockRadius;
ConstNeighborhoodIterator< ImageType > gradientItr( neighborRadiusForTensor, image, center );
gradientItr.GoToBegin();
// iterate over voxels in the neighbourhood
for ( SizeValueType i = 0; i < gradientItr.Size(); i++ )
{
OffsetType off = gradientItr.GetOffset( i );
for ( unsigned j = 0; j < ImageDimension; j++ )
{
OffsetType left = off;
left[ j ] -= 1;
OffsetType right = off;
right[ j ] += 1;
const ImagePixelType leftPixelValue = image->GetPixel( gradientItr.GetIndex( left ) );
const ImagePixelType rightPixelValue = image->GetPixel( gradientItr.GetIndex( right ) );
const SpacePrecisionType doubleSpacing = voxelSpacing[ j ] * 2.0;
// using image GetPixel instead of iterator GetPixel since offsets might be outside of neighbourhood
gradI( j, 0 ) = ( leftPixelValue - rightPixelValue ) / doubleSpacing;
}
// Compute tensor product of gradI with itself
const vnl_matrix< SpacePrecisionType > tnspose = gradI.GetTranspose();
StructureTensorType product ( gradI * tnspose );
tensor += product;
}
const double trace = vnl_trace( tensor.GetVnlMatrix() );
// trace should be non-zero
if ( itk::Math::abs(trace) < TRACE_EPSILON )
{
rit++;
numberOfPointsInserted--;
continue;
}
tensor /= trace;
pointData->InsertElement( numberOfPointsInserted , tensor );
} // end of compute structure tensor
// add the point to the container
PointType point;
image->TransformIndexToPhysicalPoint( indexOfPointToPick, point );
points->InsertElement( numberOfPointsInserted, point );
// mark off connected points
const MapPixelType ineligeblePointCode = 0;
for ( size_t j = 0, n = m_NonConnectivityOffsets.size(); j < n; j++ )
{
IndexType idx = rit->second;
idx += m_NonConnectivityOffsets[ j ];
selectionMap->SetPixel( idx, ineligeblePointCode );
}
}
rit++;
}
// set points
pointSet->SetPoints( points );
pointSet->SetPointData( pointData );
}
} // end namespace itk
#endif
|