File: itkZeroCrossingImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (190 lines) | stat: -rw-r--r-- 6,701 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkZeroCrossingImageFilter_hxx
#define itkZeroCrossingImageFilter_hxx

#include "itkConstNeighborhoodIterator.h"
#include "itkZeroCrossingImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkFixedArray.h"
#include "itkProgressReporter.h"
#include "itkMath.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
void
ZeroCrossingImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  typename Superclass::InputImagePointer inputPtr =
    const_cast< TInputImage * >( this->GetInput() );
  typename Superclass::OutputImagePointer outputPtr = this->GetOutput();

  if ( !inputPtr || !outputPtr )
    {
    return;
    }

  // Build an operator so that we can determine the kernel size
  SizeValueType radius = NumericTraits< SizeValueType >::ZeroValue();

  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();

  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius(radius);

  // crop the input requested region at the input's largest possible region
  if ( inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() ) )
    {
    inputPtr->SetRequestedRegion(inputRequestedRegion);
    return;
    }
  else
    {
    // Couldn't crop the region (requested region is outside the largest
    // possible region).  Throw an exception.

    // store what we tried to request (prior to trying to crop)
    inputPtr->SetRequestedRegion(inputRequestedRegion);

    // build an exception
    InvalidRequestedRegionError e(__FILE__, __LINE__);
    e.SetLocation(ITK_LOCATION);
    e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
    e.SetDataObject(inputPtr);
    throw e;
    }
}

template< typename TInputImage, typename TOutputImage >
void
ZeroCrossingImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  unsigned int i;

  ZeroFluxNeumannBoundaryCondition< TInputImage > nbc;

  ConstNeighborhoodIterator< TInputImage > bit;
  ImageRegionIterator< TOutputImage >      it;

  typename OutputImageType::Pointer output = this->GetOutput();
  typename  InputImageType::ConstPointer input  = this->GetInput();

  // Calculate iterator radius
  Size< ImageDimension > radius;
  radius.Fill(1);

  // Find the data-set boundary "faces"
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< TInputImage >::
  FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< TInputImage > bC;
  faceList = bC(input, outputRegionForThread, radius);

  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< TInputImage >::
  FaceListType::iterator fit;

  // support progress methods/callbacks
  ProgressReporter progress( this, threadId, outputRegionForThread.GetNumberOfPixels() );

  InputImagePixelType this_one, that, abs_this_one, abs_that;
  InputImagePixelType zero = NumericTraits< InputImagePixelType >::ZeroValue();

  FixedArray< OffsetValueType, 2 *ImageDimension > offset;

  bit = ConstNeighborhoodIterator< InputImageType >( radius,
                                                     input,
                                                     *faceList.begin() );
  //Set the offset of the neighbors to the center pixel.
  for ( i = 0; i < ImageDimension; i++ )
    {
    offset[i] = -1 * static_cast< OffsetValueType >( bit.GetStride(i) );
    offset[i + ImageDimension] =  bit.GetStride(i);
    }

  // Process each of the boundary faces.  These are N-d regions which border
  // the edge of the buffer.
  for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
    {
    bit = ConstNeighborhoodIterator< InputImageType >(radius,
                                                      input, *fit);
    it = ImageRegionIterator< OutputImageType >(output, *fit);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();

    const SizeValueType center = bit.Size() / 2;
    while ( !bit.IsAtEnd() )
      {
      this_one = bit.GetPixel(center);
      it.Set(m_BackgroundValue);
      for ( i = 0; i < ImageDimension * 2; i++ )
        {
        that = bit.GetPixel(center + offset[i]);
        if ( ( ( this_one < zero ) && ( that > zero ) )
             || ( ( this_one > zero ) && ( that < zero ) )
             || ( ( Math::ExactlyEquals(this_one, zero) ) && ( Math::NotExactlyEquals(that, zero) ) )
             || ( ( Math::NotExactlyEquals(this_one, zero) ) && ( Math::ExactlyEquals(that, zero) ) ) )
          {
          abs_this_one =  itk::Math::abs(this_one);
          abs_that = itk::Math::abs(that);
          if ( abs_this_one < abs_that )
            {
            it.Set(m_ForegroundValue);
            break;
            }
          else if ( Math::ExactlyEquals(abs_this_one, abs_that) && i >= ImageDimension )
            {
            it.Set(m_ForegroundValue);
            break;
            }
          }
        }
      ++bit;
      ++it;
      progress.CompletedPixel();
      }
    }
}

template< typename TInputImage, typename TOutputImage >
void
ZeroCrossingImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "ForegroundValue: "
     << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_ForegroundValue )
     << std::endl;
  os << indent << "BackgroundValue: "
     << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_BackgroundValue )
     << std::endl;
}
} //end of itk namespace

#endif