1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkHessianRecursiveGaussianImageFilter.h"
// This test creates an image varying as a 1D Gaussian in the X direction
// for different values of sigma, and checks the scale-space response of
// the xx component of the Hessian at the center of the Gaussian.
// If NormalizeAcrossScale works correctly, the filter should yield the
// same Hxx across different scales.
int itkHessianRecursiveGaussianFilterScaleSpaceTest(int, char* [] )
{
const unsigned int Dimension = 3;
typedef double PixelType;
typedef itk::Image<PixelType,Dimension> ImageType;
typedef itk::Index<Dimension> IndexType;
typedef itk::Size<Dimension> SizeType;
typedef itk::ImageRegion<Dimension> RegionType;
typedef ImageType::PointType PointType;
typedef ImageType::SpacingType SpacingType;
ImageType::Pointer inputImage = ImageType::New();
SizeType size;
size.Fill(21);
size[0] = 401;
IndexType start;
start.Fill(0);
RegionType region;
region.SetIndex(start);
region.SetSize(size);
PointType origin;
origin.Fill(-1.25);
origin[0] = -20.0;
SpacingType spacing;
spacing.Fill(0.1);
inputImage->SetOrigin(origin);
inputImage->SetSpacing(spacing);
inputImage->SetLargestPossibleRegion(region);
inputImage->SetBufferedRegion(region);
inputImage->SetRequestedRegion(region);
inputImage->Allocate();
typedef itk::ImageRegionIteratorWithIndex<ImageType> IteratorType;
const unsigned int numberOfScales = 4;
double scales[numberOfScales];
scales[0] = 1.0;
scales[1] = 2.0;
scales[2] = 3.0;
scales[3] = 5.0;
// changing the size of the object with the the size of the
// gaussian should produce the same results
for (unsigned int i=0; i<numberOfScales; i++)
{
IteratorType it(inputImage, inputImage->GetRequestedRegion());
PointType point;
double objectSize = scales[i];
// Fill the image with a 1D Gaussian along X with sigma equal to the current scale
// The Gaussian is not normalized, since it should have the same peak value across
// scales, only sigma should change
while(!it.IsAtEnd())
{
inputImage->TransformIndexToPhysicalPoint(it.GetIndex(),point);
double value = std::exp(-point[0]*point[0] / (2.0*objectSize*objectSize));
it.Set(value);
++it;
}
// Compute the hessian using NormalizeAcrossScale true
typedef itk::HessianRecursiveGaussianImageFilter<ImageType> FilterType;
typedef FilterType::OutputImageType HessianImageType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput(inputImage);
filter->SetSigma(objectSize);
filter->SetNormalizeAcrossScale(true);
filter->Update();
HessianImageType::Pointer outputImage = filter->GetOutput();
// Get the value at the center of the image, the location of the peak of the Gaussian
PointType center;
center.Fill(0.0);
IndexType centerIndex;
outputImage->TransformPhysicalPointToIndex(center,centerIndex);
// Irrespective of the scale, the Hxx component should be the same
double centerHxx = outputImage->GetPixel(centerIndex)[0];
if (centerHxx > -0.3546 || centerHxx < -0.3547 )
{
std::cout << "center Hessian: " << outputImage->GetPixel(centerIndex) << std::endl;
return EXIT_FAILURE;
}
}
// maintaining the size of the object and gaussian, in physical
// size, should maintain the value, while the size of the image changes.
for (unsigned int i=0; i<numberOfScales; i++)
{
IteratorType it(inputImage, inputImage->GetRequestedRegion());
PointType point;
double objectSize = 5.0;
spacing.Fill(scales[i]/5.0);
inputImage->SetSpacing(spacing);
// Fill the image with a 1D Gaussian along X with sigma equal to
// the object size.
// The Gaussian is not normalized, since it should have the same peak value across
// scales, only sigma should change
while(!it.IsAtEnd())
{
inputImage->TransformIndexToPhysicalPoint(it.GetIndex(),point);
double value = std::exp(-point[0]*point[0] / (2.0*objectSize*objectSize));
it.Set(value);
++it;
}
// Compute the hessian using NormalizeAcrossScale true
typedef itk::HessianRecursiveGaussianImageFilter<ImageType> FilterType;
typedef FilterType::OutputImageType HessianImageType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput(inputImage);
filter->SetSigma(objectSize);
filter->SetNormalizeAcrossScale(true);
filter->Update();
HessianImageType::Pointer outputImage = filter->GetOutput();
// Get the value at the center of the image, the location of the peak of the Gaussian
PointType center;
center.Fill(0.0);
IndexType centerIndex;
outputImage->TransformPhysicalPointToIndex(center,centerIndex);
// Irrespective of the scale, the Hxx component should be the same
double centerHxx = outputImage->GetPixel(centerIndex)[0];
if (centerHxx > -0.354 || centerHxx < -0.355 )
{
std::cout << "center Hessian: " << outputImage->GetPixel(centerIndex) << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
|