File: itkHessianToObjectnessMeasureImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (137 lines) | stat: -rw-r--r-- 4,455 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkHessianToObjectnessMeasureImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkHessianRecursiveGaussianImageFilter.h"
#include "itkTestingMacros.h"


int itkHessianToObjectnessMeasureImageFilterTest( int argc, char *argv[] )
{
  if ( argc < 3 )
    {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << argv[0]
              << " inputImage"
              << " outputImage [ObjectDimension] [Bright/Dark]" << std::endl;
    return EXIT_FAILURE;
    }

  // Define the dimension of the images
  const unsigned char Dimension = 2;

  typedef float PixelType;

  // Declare the types of the images
  typedef itk::Image< PixelType, Dimension > ImageType;

  typedef itk::ImageFileReader< ImageType > FileReaderType;

  // Declare the type of the recursive Gaussian filter
  typedef itk::HessianRecursiveGaussianImageFilter<
                                            ImageType >  GaussianImageFilterType;

  typedef GaussianImageFilterType::OutputImageType        HessianImageType;

  // Delcare the type of objectness measure image filter

  typedef itk::HessianToObjectnessMeasureImageFilter< HessianImageType, ImageType >
    ObjectnessFilterType;

  FileReaderType::Pointer imageReader = FileReaderType::New();
  imageReader->SetFileName( argv[1] );

  TRY_EXPECT_NO_EXCEPTION( imageReader->Update() );


  // Create a Gaussian filter
  GaussianImageFilterType::Pointer gaussianFilter = GaussianImageFilterType::New();

  // Create an objectness filter
  ObjectnessFilterType::Pointer objectnessFilter = ObjectnessFilterType::New();

  EXERCISE_BASIC_OBJECT_METHODS( objectnessFilter, HessianToObjectnessMeasureImageFilter,
    ImageToImageFilter );


  // Connect the input images
  gaussianFilter->SetInput( imageReader->GetOutput() );
  objectnessFilter->SetInput( gaussianFilter->GetOutput() );

  // Set the filter properties
  bool scaleObjectnessMeasure = false;
  TEST_SET_GET_BOOLEAN( objectnessFilter, ScaleObjectnessMeasure, scaleObjectnessMeasure );

  bool brightObject = true;
  TEST_SET_GET_BOOLEAN( objectnessFilter, BrightObject, brightObject );

  double alphaValue = 0.5;
  objectnessFilter->SetAlpha( alphaValue );
  TEST_SET_GET_VALUE( alphaValue, objectnessFilter->GetAlpha() );

  double betaValue = 0.5;
  objectnessFilter->SetBeta( betaValue );
  TEST_SET_GET_VALUE( betaValue, objectnessFilter->GetBeta() );

  double gammaValue = 0.5;
  objectnessFilter->SetGamma( gammaValue );
  TEST_SET_GET_VALUE( gammaValue, objectnessFilter->GetGamma() );


  // Check that an exception is thrown if the object dimension is larger than
  // the image dimension
  objectnessFilter->SetObjectDimension( 3 );

  TRY_EXPECT_EXCEPTION( objectnessFilter->Update() );


  if( argc >= 3 )
    {
    unsigned int objectDimension = atoi( argv[3] );
    objectnessFilter->SetObjectDimension( objectDimension );
    TEST_SET_GET_VALUE( objectDimension, objectnessFilter->GetObjectDimension() );
    }

  if( argc >= 4 )
    {
    brightObject = atoi( argv[4] );
    objectnessFilter->SetBrightObject( brightObject );
    TEST_SET_GET_VALUE( brightObject, objectnessFilter->GetBrightObject() );
    }


  TRY_EXPECT_NO_EXCEPTION( objectnessFilter->Update() );


  // Write the output image
  typedef itk::ImageFileWriter< ImageType > FileWriterType;
  FileWriterType::Pointer writer = FileWriterType::New();
  writer->SetFileName( argv[2] );
  writer->UseCompressionOn();
  writer->SetInput( objectnessFilter->GetOutput() );


  TRY_EXPECT_NO_EXCEPTION( writer->Update() );


  std::cout << "Test finished." << std::endl;
  return EXIT_SUCCESS;
}