File: itkNoiseImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (105 lines) | stat: -rw-r--r-- 3,636 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkNoiseImageFilter_hxx
#define itkNoiseImageFilter_hxx
#include "itkNoiseImageFilter.h"

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkOffset.h"
#include "itkProgressReporter.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
NoiseImageFilter< TInputImage, TOutputImage >
::NoiseImageFilter()
{}

template< typename TInputImage, typename TOutputImage >
void
NoiseImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  unsigned int i;

  ZeroFluxNeumannBoundaryCondition< InputImageType > nbc;

  ConstNeighborhoodIterator< InputImageType > bit;
  ImageRegionIterator< OutputImageType >      it;

  // Allocate output
  typename OutputImageType::Pointer output = this->GetOutput();
  typename  InputImageType::ConstPointer input  = this->GetInput();

  // Find the data-set boundary "faces"
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType >::FaceListType faceList;
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType > bC;
  faceList = bC( input, outputRegionForThread, this->GetRadius() );

  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator< InputImageType >::FaceListType::iterator fit;

  // support progress methods/callbacks
  ProgressReporter progress( this, threadId, outputRegionForThread.GetNumberOfPixels() );

  InputRealType value;
  InputRealType sum;
  InputRealType sumOfSquares;
  InputRealType var;
  InputRealType num;

  // Process each of the boundary faces.  These are N-d regions which border
  // the edge of the buffer.
  for ( fit = faceList.begin(); fit != faceList.end(); ++fit )
    {
    bit = ConstNeighborhoodIterator< InputImageType >(this->GetRadius(),
                                                      input, *fit);
    unsigned int neighborhoodSize = bit.Size();
    num = static_cast< InputRealType >( bit.Size() );

    it = ImageRegionIterator< OutputImageType >(output, *fit);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();

    while ( !bit.IsAtEnd() )
      {
      sum = NumericTraits< InputRealType >::ZeroValue();
      sumOfSquares = NumericTraits< InputRealType >::ZeroValue();
      for ( i = 0; i < neighborhoodSize; ++i )
        {
        value = static_cast< InputRealType >( bit.GetPixel(i) );
        sum += value;
        sumOfSquares += ( value * value );
        }

      // calculate the standard deviation value
      var = ( sumOfSquares - ( sum * sum / num ) ) / ( num - 1.0 );
      it.Set( static_cast< OutputPixelType >( std::sqrt(var) ) );

      ++bit;
      ++it;
      progress.CompletedPixel();
      }
    }
}
} // end namespace itk

#endif