1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveSeparableImageFilter_hxx
#define itkRecursiveSeparableImageFilter_hxx
#include "itkRecursiveSeparableImageFilter.h"
#include "itkObjectFactory.h"
#include "itkImageLinearIteratorWithIndex.h"
#include "itkProgressReporter.h"
#include <new>
namespace itk
{
template< typename TInputImage, typename TOutputImage >
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::RecursiveSeparableImageFilter():
m_N0( 1.0 ),
m_N1( 1.0 ),
m_N2( 1.0 ),
m_N3( 1.0 ),
m_D1( 0.0 ),
m_D2( 0.0 ),
m_D3( 0.0 ),
m_D4( 0.0 ),
m_M1( 0.0 ),
m_M2( 0.0 ),
m_M3( 0.0 ),
m_M4( 0.0 ),
m_BN1( 0.0 ),
m_BN2( 0.0 ),
m_BN3( 0.0 ),
m_BN4( 0.0 ),
m_BM1( 0.0 ),
m_BM2( 0.0 ),
m_BM3( 0.0 ),
m_BM4( 0.0 ),
m_Direction( 0 ),
m_ImageRegionSplitter(ImageRegionSplitterDirection::New())
{
this->SetNumberOfRequiredOutputs(1);
this->SetNumberOfRequiredInputs(1);
this->InPlaceOff();
}
/**
* Set Input Image
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::SetInputImage(const TInputImage *input)
{
// ProcessObject is not const_correct so this const_cast is required
ProcessObject::SetNthInput( 0,
const_cast< TInputImage * >( input ) );
}
/**
* Get Input Image
*/
template< typename TInputImage, typename TOutputImage >
const TInputImage *
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::GetInputImage(void)
{
return dynamic_cast< const TInputImage * >(
( ProcessObject::GetInput(0) ) );
}
/**
* Apply Recursive Filter
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::FilterDataArray(RealType *outs, const RealType *data,
RealType *scratch, SizeValueType ln)
{
RealType * scratch1 = outs;
RealType * scratch2 = scratch;
/**
* Causal direction pass
*/
// this value is assumed to exist from the border to infinity.
const RealType &outV1 = data[0];
/**
* Initialize borders
*/
MathEMAMAMAM( scratch1[0], outV1 , m_N0, outV1, m_N1, outV1 , m_N2, outV1, m_N3 );
MathEMAMAMAM( scratch1[1], data[1], m_N0, outV1, m_N1, outV1 , m_N2, outV1, m_N3 );
MathEMAMAMAM( scratch1[2], data[2], m_N0, data[1], m_N1, outV1 , m_N2, outV1, m_N3 );
MathEMAMAMAM( scratch1[3], data[3], m_N0, data[2], m_N1, data[1], m_N2, outV1, m_N3 );
// note that the outV1 value is multiplied by the Boundary coefficients m_BNi
MathSMAMAMAM( scratch1[0], outV1 , m_BN1, outV1 , m_BN2, outV1 , m_BN3, outV1, m_BN4);
MathSMAMAMAM( scratch1[1], scratch1[0], m_D1 , outV1 , m_BN2, outV1 , m_BN3 , outV1, m_BN4);
MathSMAMAMAM( scratch1[2], scratch1[1], m_D1 , scratch1[0], m_D2 , outV1 , m_BN3 , outV1, m_BN4);
MathSMAMAMAM( scratch1[3], scratch1[2], m_D1 , scratch1[1], m_D2 , scratch1[0], m_D3 , outV1, m_BN4);
/**
* Recursively filter the rest
*/
for ( unsigned int i = 4; i < ln; i++ )
{
MathEMAMAMAM( scratch1[i], data[i], m_N0, data[i - 1] , m_N1, data[i - 2] , m_N2, data[i - 3] , m_N3);
MathSMAMAMAM( scratch1[i], scratch1[i - 1], m_D1, scratch1[i - 2], m_D2, scratch1[i - 3], m_D3, scratch1[i - 4], m_D4);
}
/**
* Store the causal result: outs = scratch already done via alias
*
*/
/**
* AntiCausal direction pass
*/
// this value is assumed to exist from the border to infinity.
const RealType &outV2 = data[ln - 1];
/**
* Initialize borders
*/
MathEMAMAMAM( scratch2[ln - 1], outV2 , m_M1, outV2 , m_M2, outV2 , m_M3, outV2, m_M4);
MathEMAMAMAM( scratch2[ln - 2], data[ln - 1], m_M1, outV2 , m_M2, outV2 , m_M3, outV2, m_M4);
MathEMAMAMAM( scratch2[ln - 3], data[ln - 2], m_M1, data[ln - 1], m_M2, outV2 , m_M3, outV2, m_M4);
MathEMAMAMAM( scratch2[ln - 4], data[ln - 3], m_M1, data[ln - 2], m_M2, data[ln - 1], m_M3, outV2, m_M4);
// note that the outV2value is multiplied by the Boundary coefficients m_BMi
MathSMAMAMAM( scratch2[ln - 1], outV2 , m_BM1, outV2 , m_BM2, outV2 , m_BM3, outV2, m_BM4);
MathSMAMAMAM( scratch2[ln - 2], scratch2[ln - 1], m_D1 , outV2 , m_BM2, outV2 , m_BM3, outV2, m_BM4);
MathSMAMAMAM( scratch2[ln - 3], scratch2[ln - 2], m_D1 , scratch2[ln - 1], m_D2 , outV2 , m_BM3, outV2, m_BM4);
MathSMAMAMAM( scratch2[ln - 4], scratch2[ln - 3], m_D1 , scratch2[ln - 2], m_D2 , scratch2[ln - 1], m_D3 , outV2, m_BM4);
/**
* Recursively filter the rest
*/
for ( unsigned int i = ln - 4; i > 0; i-- )
{
MathEMAMAMAM( scratch2[i - 1], data[i] , m_M1, data[i + 1] , m_M2, data[i + 2] , m_M3, data[i + 3] , m_M4);
MathSMAMAMAM( scratch2[i - 1], scratch2[i], m_D1, scratch2[i + 1], m_D2, scratch2[i + 2], m_D3, scratch2[i + 3], m_D4);
}
/**
* Roll the antiCausal part into the output
*/
for ( unsigned int i = 0; i < ln; i++ )
{
outs[i] += scratch2[i];
}
}
//
// we need all of the image in just the "Direction" we are separated into
//
template< typename TInputImage, typename TOutputImage >
void
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *output)
{
TOutputImage *out = dynamic_cast< TOutputImage * >( output );
if ( out )
{
OutputImageRegionType outputRegion = out->GetRequestedRegion();
const OutputImageRegionType & largestOutputRegion = out->GetLargestPossibleRegion();
// verify sane parameter
if ( this->m_Direction >= outputRegion.GetImageDimension() )
{
itkExceptionMacro("Direction selected for filtering is greater than ImageDimension")
}
// expand output region to match largest in the "Direction" dimension
outputRegion.SetIndex( m_Direction, largestOutputRegion.GetIndex(m_Direction) );
outputRegion.SetSize( m_Direction, largestOutputRegion.GetSize(m_Direction) );
out->SetRequestedRegion(outputRegion);
}
}
template< typename TInputImage, typename TOutputImage >
const ImageRegionSplitterBase*
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::GetImageRegionSplitter(void) const
{
return this->m_ImageRegionSplitter;
}
template< typename TInputImage, typename TOutputImage >
void
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::BeforeThreadedGenerateData()
{
typedef ImageRegion< TInputImage::ImageDimension > RegionType;
typename TInputImage::ConstPointer inputImage( this->GetInputImage () );
typename TOutputImage::Pointer outputImage( this->GetOutput() );
const unsigned int imageDimension = inputImage->GetImageDimension();
if ( this->m_Direction >= imageDimension )
{
itkExceptionMacro("Direction selected for filtering is greater than ImageDimension");
}
const typename InputImageType::SpacingType & pixelSize =
inputImage->GetSpacing();
this->m_ImageRegionSplitter->SetDirection(m_Direction);
this->SetUp(pixelSize[m_Direction]);
RegionType region = outputImage->GetRequestedRegion();
const unsigned int ln = region.GetSize()[this->m_Direction];
if ( ln < 4 )
{
itkExceptionMacro(
"The number of pixels along direction " << this->m_Direction
<<
" is less than 4. This filter requires a minimum of four pixels along the dimension to be processed.");
}
}
/**
* Compute Recursive filter
* line by line in one of the dimensions
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread, ThreadIdType threadId)
{
typedef typename TOutputImage::PixelType OutputPixelType;
typedef ImageLinearConstIteratorWithIndex< TInputImage > InputConstIteratorType;
typedef ImageLinearIteratorWithIndex< TOutputImage > OutputIteratorType;
typedef ImageRegion< TInputImage::ImageDimension > RegionType;
typename TInputImage::ConstPointer inputImage( this->GetInputImage () );
typename TOutputImage::Pointer outputImage( this->GetOutput() );
RegionType region = outputRegionForThread;
InputConstIteratorType inputIterator(inputImage, region);
OutputIteratorType outputIterator(outputImage, region);
inputIterator.SetDirection(this->m_Direction);
outputIterator.SetDirection(this->m_Direction);
const SizeValueType ln = region.GetSize(this->m_Direction);
RealType *inps = ITK_NULLPTR;
RealType *outs = ITK_NULLPTR;
RealType *scratch = ITK_NULLPTR;
try
{
inps = new RealType[ln];
outs = new RealType[ln];
scratch = new RealType[ln];
inputIterator.GoToBegin();
outputIterator.GoToBegin();
const SizeValueType numberOfLinesToProcess = outputRegionForThread.GetNumberOfPixels() / outputRegionForThread.GetSize(this->m_Direction);
ProgressReporter progress(this, threadId, numberOfLinesToProcess, 10);
while ( !inputIterator.IsAtEnd() && !outputIterator.IsAtEnd() )
{
unsigned int i = 0;
while ( !inputIterator.IsAtEndOfLine() )
{
inps[i++] = inputIterator.Get();
++inputIterator;
}
this->FilterDataArray(outs, inps, scratch, ln);
unsigned int j = 0;
while ( !outputIterator.IsAtEndOfLine() )
{
outputIterator.Set( static_cast< OutputPixelType >( outs[j++] ) );
++outputIterator;
}
inputIterator.NextLine();
outputIterator.NextLine();
// Although the method name is CompletedPixel(),
// this is being called after each line is processed
progress.CompletedPixel();
}
}
catch (...)
{
// Consider cases where memory allocation may fail or the process
// is aborted.
// release locally allocated memory, if memory allocation fails
// then we will delete a ITK_NULLPTR pointer, which is a valid operation
delete[] outs;
delete[] inps;
delete[] scratch;
// rethrow same exception
throw;
}
delete[] outs;
delete[] inps;
delete[] scratch;
}
template< typename TInputImage, typename TOutputImage >
void
RecursiveSeparableImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Direction: " << m_Direction << std::endl;
}
} // end namespace itk
#endif
|