File: itkGradientMagnitudeRecursiveGaussianImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (267 lines) | stat: -rw-r--r-- 8,660 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGradientMagnitudeRecursiveGaussianImageFilter_hxx
#define itkGradientMagnitudeRecursiveGaussianImageFilter_hxx

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"
#include "itkMath.h"

namespace itk
{
/**
 * Constructor
 */
template< typename TInputImage, typename TOutputImage >
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GradientMagnitudeRecursiveGaussianImageFilter()
{
  m_NormalizeAcrossScale = false;

  m_DerivativeFilter = DerivativeFilterType::New();
  m_DerivativeFilter->SetOrder(DerivativeFilterType::FirstOrder);
  m_DerivativeFilter->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
  m_DerivativeFilter->InPlaceOff();
  m_DerivativeFilter->ReleaseDataFlagOn();

  for ( unsigned int i = 0; i < ImageDimension - 1; i++ )
    {
    m_SmoothingFilters[i] = GaussianFilterType::New();
    m_SmoothingFilters[i]->SetOrder(GaussianFilterType::ZeroOrder);
    m_SmoothingFilters[i]->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
    m_SmoothingFilters[i]->InPlaceOn();
    }

  m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );
  for ( unsigned int i = 1; i < ImageDimension - 1; i++ )
    {
    m_SmoothingFilters[i]->SetInput( m_SmoothingFilters[i - 1]->GetOutput() );
    }

  m_SqrSpacingFilter = SqrSpacingFilterType::New();
  m_SqrSpacingFilter->SetInput( 1, m_SmoothingFilters[ImageDimension - 2]->GetOutput() );
  // run that filter in place for much efficiency
  m_SqrSpacingFilter->InPlaceOn();

  // input of SqrtFilter is the cumulative image - we can't set it now
  m_SqrtFilter = SqrtFilterType::New();
  m_SqrtFilter->InPlaceOn();

  this->SetSigma(1.0);
  this->InPlaceOff();
}

template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
  os << "Sigma: " << m_DerivativeFilter->GetSigma() << std::endl;
}

/**
 * Set value of Sigma
 */
template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetSigma(RealType sigma)
{
  if ( Math::NotExactlyEquals(sigma, this->GetSigma()) )
    {
    for ( unsigned int i = 0; i < ImageDimension - 1; i++ )
      {
      m_SmoothingFilters[i]->SetSigma(sigma);
      }
    m_DerivativeFilter->SetSigma(sigma);

    this->Modified();
    }
}

template< typename TInputImage, typename TOutputImage >
typename GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >::RealType
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GetSigma()
{
  // just return the sigma value of one filter
  return m_DerivativeFilter->GetSigma();
}

template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetNumberOfThreads(ThreadIdType nb)
{
  Superclass::SetNumberOfThreads(nb);
  for ( unsigned int i = 0; i < ImageDimension - 1; i++ )
    {
    m_SmoothingFilters[i]->SetNumberOfThreads(nb);
    }
  m_DerivativeFilter->SetNumberOfThreads(nb);
  m_SqrSpacingFilter->SetNumberOfThreads(nb);
  m_SqrtFilter->SetNumberOfThreads(nb);
}

/**
 * Set Normalize Across Scale Space
 */
template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetNormalizeAcrossScale(bool normalize)
{
  if ( m_NormalizeAcrossScale != normalize )
    {
    m_NormalizeAcrossScale = normalize;

    for ( unsigned int i = 0; i < ImageDimension - 1; i++ )
      {
      m_SmoothingFilters[i]->SetNormalizeAcrossScale(normalize);
      }
    m_DerivativeFilter->SetNormalizeAcrossScale(normalize);

    this->Modified();
    }
}

//
//
//
template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();

  // This filter needs all of the input
  typename GradientMagnitudeRecursiveGaussianImageFilter< TInputImage,
                                                          TOutputImage >::InputImagePointer image =
    const_cast< InputImageType * >( this->GetInput() );
  if ( image )
    {
    image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
    }
}

//
//
//
template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *output)
{
  TOutputImage *out = dynamic_cast< TOutputImage * >( output );

  if ( out )
    {
    out->SetRequestedRegion( out->GetLargestPossibleRegion() );
    }
}

/**
 * Compute filter for Gaussian kernel
 */
template< typename TInputImage, typename TOutputImage >
void
GradientMagnitudeRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateData(void)
{
  itkDebugMacro(<< "GradientMagnitudeRecursiveGaussianImageFilter generating data ");

  const typename TInputImage::ConstPointer inputImage( this->GetInput() );

  typename TOutputImage::Pointer outputImage( this->GetOutput() );

  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // If the last filter is running in-place then this bulk data is not
  // needed, release it to save memory
  if ( m_SqrtFilter->CanRunInPlace() )
    {
    outputImage->ReleaseData();
    }


  typename CumulativeImageType::Pointer cumulativeImage = CumulativeImageType::New();
  cumulativeImage->SetRegions( inputImage->GetBufferedRegion() );
  cumulativeImage->Allocate();
  cumulativeImage->FillBuffer(NumericTraits< InternalRealType >::ZeroValue());
  // The output's information must match the input's information
  cumulativeImage->CopyInformation( this->GetInput() );

  m_DerivativeFilter->SetInput(inputImage);

  const unsigned int numberOfFilterRuns = ImageDimension * ImageDimension;
  progress->RegisterInternalFilter(m_DerivativeFilter, 1.0f / numberOfFilterRuns);

  for ( unsigned int k = 0; k < ImageDimension - 1; k++ )
    {
    progress->RegisterInternalFilter(m_SmoothingFilters[k], 1.0f / numberOfFilterRuns);
    }

  for ( unsigned int dim = 0; dim < ImageDimension; dim++ )
    {
    unsigned int i = 0;
    unsigned int j = 0;
    while (  i < ImageDimension - 1 )
      {
      if ( i == dim )
        {
        j++;
        }
      m_SmoothingFilters[i]->SetDirection(j);
      i++;
      j++;
      }
    m_DerivativeFilter->SetDirection(dim);

    m_SqrSpacingFilter->GetFunctor(). m_Spacing = inputImage->GetSpacing()[dim];
    m_SqrSpacingFilter->SetInput(cumulativeImage);

    // run the mini pipeline for that dimension
    // Note: we must take care to update the requested region. Without that, a
    // second run of the
    // filter with a smaller input than in the first run trigger an exception,
    // because the filter
    // ask for a larger region than available. TODO: there should be a way to do
    // that only once
    // per GenerateData() call.
    m_SqrSpacingFilter->UpdateLargestPossibleRegion();

    // and user the result as the cumulative image
    cumulativeImage = m_SqrSpacingFilter->GetOutput();
    cumulativeImage->DisconnectPipeline();
    }
  m_SqrtFilter->SetInput(cumulativeImage);
  m_SqrtFilter->GraftOutput( this->GetOutput() );
  m_SqrtFilter->UpdateLargestPossibleRegion();
  this->GraftOutput( m_SqrtFilter->GetOutput() );
}
} // end namespace itk

#endif