File: itkGradientRecursiveGaussianImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (264 lines) | stat: -rw-r--r-- 10,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGradientRecursiveGaussianImageFilter_h
#define itkGradientRecursiveGaussianImageFilter_h

#include "itkRecursiveGaussianImageFilter.h"
#include "itkNthElementImageAdaptor.h"
#include "itkImage.h"
#include "itkCovariantVector.h"
#include "itkDefaultConvertPixelTraits.h"
#include "itkProgressAccumulator.h"
#include "itkImageRegionIterator.h"
#include "itkVectorImage.h"
#include <vector>

namespace itk
{
/** \class GradientRecursiveGaussianImageFilter
 * \brief Computes the gradient of an image by convolution
 *        with the first derivative of a Gaussian.
 *
 * This filter is implemented using the recursive gaussian
 * filters.
 *
 * This filter supports both scalar and vector pixel types
 * within the input image, including VectorImage type.
 *
 * \ingroup GradientFilters
 * \ingroup SingleThreaded
 * \ingroup ITKImageGradient
 *
 * \wiki
 * \wikiexample{EdgesAndGradients/GradientRecursiveGaussianImageFilter,Compute the gradient of an image by convolution with the first derivative of a Gaussian}
 * \endwiki
 */
template< typename TInputImage,
          typename TOutputImage = Image< CovariantVector<
                                           typename NumericTraits< typename TInputImage::PixelType >::RealType,
                                           TInputImage::ImageDimension >,
                                         TInputImage::ImageDimension > >
class ITK_TEMPLATE_EXPORT GradientRecursiveGaussianImageFilter:
  public ImageToImageFilter< TInputImage, TOutputImage >
{
public:
  /** Standard class typedefs. */
  typedef GradientRecursiveGaussianImageFilter            Self;
  typedef ImageToImageFilter< TInputImage, TOutputImage > Superclass;
  typedef SmartPointer< Self >                            Pointer;
  typedef SmartPointer< const Self >                      ConstPointer;

  /** Pixel Type of the input image. May be scalar or vector. */
  typedef TInputImage                                           InputImageType;
  typedef typename TInputImage::PixelType                       PixelType;
  typedef typename NumericTraits< PixelType >::RealType         RealType;
  typedef typename NumericTraits< PixelType >::ScalarRealType   ScalarRealType;

  /** Define the image type for internal computations
      RealType is usually 'double' in NumericTraits.
      Here we prefer float in order to save memory.  */
  typedef typename NumericTraits< RealType >::FloatType         InternalRealType;
  typedef typename NumericTraits< InternalRealType >::ValueType InternalScalarRealType;

  /** Image dimension. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TInputImage::ImageDimension);

  /** Gradient vector typedef */
  typedef CovariantVector<ScalarRealType, ImageDimension > GradientVectorType;

  /** Define the image type for internal computations
      RealType is usually 'double' in NumericTraits.
      Here we prefer float in order to save memory.  */
  typedef Image< InternalRealType,
                 itkGetStaticConstMacro(ImageDimension) >   RealImageType;


  /**  Output Image Nth Element Adaptor
   *  This adaptor allows to use conventional scalar
   *  smoothing filters to compute each one of the
   *  components of the gradient image pixels. */
  typedef NthElementImageAdaptor< TOutputImage,
                                  InternalScalarRealType >  OutputImageAdaptorType;

  typedef typename OutputImageAdaptorType::Pointer OutputImageAdaptorPointer;

  /** Define the type for the sigma array **/
  typedef FixedArray< ScalarRealType,
                      itkGetStaticConstMacro(ImageDimension) > SigmaArrayType;

  /**  Smoothing filter type */
  typedef RecursiveGaussianImageFilter<
    RealImageType,
    RealImageType
    >    GaussianFilterType;

  /**  Derivative filter type, it will be the first in the pipeline  */
  typedef RecursiveGaussianImageFilter<
    InputImageType,
    RealImageType
    >    DerivativeFilterType;

  /**  Pointer to a gaussian filter.  */
  typedef typename GaussianFilterType::Pointer GaussianFilterPointer;

  /**  Pointer to a derivative filter.  */
  typedef typename DerivativeFilterType::Pointer DerivativeFilterPointer;

  /**  Pointer to the Output Image */
  typedef typename TOutputImage::Pointer OutputImagePointer;

  /** Type of the output Image */
  typedef TOutputImage                                         OutputImageType;
  typedef typename OutputImageType::PixelType                  OutputPixelType;
  typedef typename NumericTraits< OutputPixelType >::ValueType OutputComponentType;
  typedef CovariantVector< OutputComponentType, ImageDimension >
    CovariantVectorType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Runtime information support. */
  itkTypeMacro(GradientRecursiveGaussianImageFilter,
               ImageToImageFilter);

  /** Set Sigma value. Sigma is measured in the units of image spacing. */
  void SetSigmaArray(const SigmaArrayType & sigmas);
  void SetSigma(ScalarRealType sigma);

  SigmaArrayType GetSigmaArray() const;
  ScalarRealType GetSigma() const;

  /** Define which normalization factor will be used for the Gaussian
   *  \sa  RecursiveGaussianImageFilter::SetNormalizeAcrossScale
   */
  void SetNormalizeAcrossScale(bool normalizeInScaleSpace);
  itkGetConstMacro(NormalizeAcrossScale, bool);

  /** GradientRecursiveGaussianImageFilter needs all of the input to produce an
   * output. Therefore, GradientRecursiveGaussianImageFilter needs to provide
   * an implementation for GenerateInputRequestedRegion in order to inform
   * the pipeline execution model.
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  virtual void GenerateInputRequestedRegion() ITK_OVERRIDE;

  /** The UseImageDirection flag determines whether the gradients are
   * computed with respect to the image grid or with respect to the physical
   * space. When this flag is ON the gradients are computed with respect to
   * the coordinate system of physical space. The difference is whether we take
   * into account the image Direction or not. The flag ON will take into
   * account the image direction and will result in an extra matrix
   * multiplication compared to the amount of computation performed when the
   * flag is OFF.
   * The default value of this flag is On.
   */
  itkSetMacro(UseImageDirection, bool);
  itkGetConstMacro(UseImageDirection, bool);
  itkBooleanMacro(UseImageDirection);

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  // Does not seem to work with wrappings, disabled
  // itkConceptMacro( InputHasNumericTraitsCheck,
  //                 ( Concept::HasNumericTraits< PixelType > ) );
  // End concept checking
#endif

protected:
  GradientRecursiveGaussianImageFilter();
  virtual ~GradientRecursiveGaussianImageFilter() ITK_OVERRIDE {}
  void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

  /** Generate Data */
  void GenerateData(void) ITK_OVERRIDE;

  // Override since the filter produces the entire dataset
  void EnlargeOutputRequestedRegion(DataObject *output) ITK_OVERRIDE;

  void GenerateOutputInformation() ITK_OVERRIDE;

private:

  template <typename TValue>
  void TransformOutputPixel( ImageRegionIterator< VectorImage<TValue, ImageDimension> > &it )
  {
    // To transform Variable length vector we need to convert to and
    // fro the CovariantVectorType
    const CovariantVectorType gradient( it.Get().GetDataPointer() );
    CovariantVectorType physicalGradient;
    it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, physicalGradient );
    it.Set( OutputPixelType( physicalGradient.GetDataPointer(), ImageDimension, false ) );
  }

  template <typename T >
  void TransformOutputPixel( ImageRegionIterator< T > &it )
  {
    OutputPixelType correctedGradient;
    const OutputPixelType & gradient = it.Get();

    const unsigned int nComponents = NumericTraits<OutputPixelType>::GetLength( gradient )/ImageDimension;

    for (unsigned int nc = 0; nc < nComponents; nc++ )
      {
      GradientVectorType componentGradient;
      GradientVectorType correctedComponentGradient;
      for (unsigned int dim = 0; dim < ImageDimension; dim++ )
        {
        componentGradient[dim] = DefaultConvertPixelTraits<OutputPixelType>::GetNthComponent( nc*ImageDimension+dim, gradient );
        }
      it.GetImage()->TransformLocalVectorToPhysicalVector(componentGradient, correctedComponentGradient );
      for (unsigned int dim = 0; dim < ImageDimension; dim++ )
        {
        DefaultConvertPixelTraits<OutputPixelType>::SetNthComponent( nc*ImageDimension+dim, correctedGradient,
                                                                     correctedComponentGradient[dim] );
        }
      }
    it.Set(correctedGradient);
  }

  template <template<typename, unsigned int> class P, class T, unsigned int N>
    void TransformOutputPixel( ImageRegionIterator< Image< P<T,N>, N > > &it )
  {
    const OutputPixelType gradient = it.Get();
    // This uses the more efficient set by reference method
    it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, it.Value() );
  }


  ITK_DISALLOW_COPY_AND_ASSIGN(GradientRecursiveGaussianImageFilter);

  std::vector< GaussianFilterPointer > m_SmoothingFilters;
  DerivativeFilterPointer              m_DerivativeFilter;
  OutputImageAdaptorPointer            m_ImageAdaptor;

  /** Normalize the image across scale space */
  bool m_NormalizeAcrossScale;

  /** Take into account image orientation when computing the Gradient */
  bool m_UseImageDirection;

  /** Standard deviation of the gaussian */
  SigmaArrayType m_Sigma;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGradientRecursiveGaussianImageFilter.hxx"
#endif

#endif