1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGradientRecursiveGaussianImageFilter_hxx
#define itkGradientRecursiveGaussianImageFilter_hxx
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"
namespace itk
{
/**
* Constructor
*/
template< typename TInputImage, typename TOutputImage >
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GradientRecursiveGaussianImageFilter()
{
m_NormalizeAcrossScale = false;
this->m_UseImageDirection = true;
itkStaticAssert(ImageDimension > 0, "Images shall have one dimension at least");
const unsigned int imageDimensionMinus1 = ImageDimension - 1;
if ( ImageDimension > 1 )
{
m_SmoothingFilters.resize(imageDimensionMinus1);
for ( unsigned int i = 0; i != imageDimensionMinus1; ++i )
{
m_SmoothingFilters[i] = GaussianFilterType::New();
m_SmoothingFilters[i]->SetOrder(GaussianFilterType::ZeroOrder);
m_SmoothingFilters[i]->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
m_SmoothingFilters[i]->InPlaceOn();
m_SmoothingFilters[i]->ReleaseDataFlagOn();
}
}
m_DerivativeFilter = DerivativeFilterType::New();
m_DerivativeFilter->SetOrder(DerivativeFilterType::FirstOrder);
m_DerivativeFilter->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
m_DerivativeFilter->ReleaseDataFlagOn();
m_DerivativeFilter->InPlaceOff();
m_DerivativeFilter->SetInput( this->GetInput() );
if ( ImageDimension > 1 )
{
m_SmoothingFilters[0]->SetInput( m_DerivativeFilter->GetOutput() );
for ( unsigned int i = 1; i != imageDimensionMinus1; ++i )
{
m_SmoothingFilters[i]->SetInput(m_SmoothingFilters[i - 1]->GetOutput() );
}
}
m_ImageAdaptor = OutputImageAdaptorType::New();
// NB: We must call SetSigma in order to initialize the smoothing
// filters with the default scale. However, m_Sigma must first be
// initialized (it is used inside SetSigma), and it must be different
// from 1.0 or the call will be ignored.
this->m_Sigma.Fill(0.0);
this->SetSigma(1.0);
}
/**
* Set value of Sigma along all dimensions.
*/
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetSigma(ScalarRealType sigma)
{
SigmaArrayType sigmas(sigma);
this->SetSigmaArray(sigmas);
}
/**
* Set value of Sigma array.
*/
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetSigmaArray(const SigmaArrayType & sigma)
{
if( this->m_Sigma != sigma )
{
this->m_Sigma = sigma;
itkStaticAssert(ImageDimension > 0, "Images shall have one dimension at least");
const unsigned int imageDimensionMinus1 = ImageDimension - 1;
for ( unsigned int i = 0; i != imageDimensionMinus1; ++i )
{
m_SmoothingFilters[i]->SetSigma(m_Sigma[i]);
}
m_DerivativeFilter->SetSigma(sigma[imageDimensionMinus1]);
this->Modified();
}
}
/**
* Get the Sigma array.
*/
template< typename TInputImage, typename TOutputImage >
typename GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SigmaArrayType
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GetSigmaArray() const
{
return m_Sigma;
}
/**
* Get value of Sigma. Returns the sigma along the first dimension.
*/
template< typename TInputImage, typename TOutputImage >
typename GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::ScalarRealType
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GetSigma() const
{
return m_Sigma[0];
}
/**
* Set Normalize Across Scale Space
*/
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetNormalizeAcrossScale(bool normalize)
{
m_NormalizeAcrossScale = normalize;
itkStaticAssert(ImageDimension > 0, "Images shall have one dimension at least");
const unsigned int imageDimensionMinus1 = ImageDimension - 1;
for ( unsigned int i = 0; i != imageDimensionMinus1; i++ )
{
m_SmoothingFilters[i]->SetNormalizeAcrossScale(normalize);
}
m_DerivativeFilter->SetNormalizeAcrossScale(normalize);
this->Modified();
}
//
//
//
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method. this should
// copy the output requested region to the input requested region
Superclass::GenerateInputRequestedRegion();
// This filter needs all of the input
typename GradientRecursiveGaussianImageFilter< TInputImage,
TOutputImage >::InputImagePointer image =
const_cast< InputImageType * >( this->GetInput() );
if ( image )
{
image->SetRequestedRegion( this->GetInput()->GetLargestPossibleRegion() );
}
}
//
//
//
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *output)
{
TOutputImage *out = dynamic_cast< TOutputImage * >( output );
if ( out )
{
out->SetRequestedRegion( out->GetLargestPossibleRegion() );
}
}
/**
* Compute filter for Gaussian kernel
*/
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateData(void)
{
// Create a process accumulator for tracking the progress of this
// minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// Compute the contribution of each filter to the total progress.
const double weight = 1.0 / ( ImageDimension * ImageDimension );
itkStaticAssert(ImageDimension > 0, "Images shall have one dimension at least");
const unsigned int imageDimensionMinus1 = ImageDimension - 1;
if( ImageDimension > 1 )
{
for( unsigned int i = 0; i != imageDimensionMinus1; ++i )
{
progress->RegisterInternalFilter(m_SmoothingFilters[i], weight);
}
}
progress->RegisterInternalFilter(m_DerivativeFilter, weight);
const typename TInputImage::ConstPointer inputImage( this->GetInput() );
typename TOutputImage::Pointer outputImage( this->GetOutput() );
unsigned int nComponents = inputImage->GetNumberOfComponentsPerPixel();
/* An Image of VariableLengthVectors will return 0 */
if (nComponents == 0 )
{
const typename InputImageType::IndexType idx = inputImage->GetLargestPossibleRegion().GetIndex();
nComponents = NumericTraits<typename InputImageType::PixelType>::GetLength( inputImage->GetPixel(idx) );
}
m_ImageAdaptor->SetImage( outputImage );
m_ImageAdaptor->SetLargestPossibleRegion(
inputImage->GetLargestPossibleRegion() );
m_ImageAdaptor->SetBufferedRegion(
inputImage->GetBufferedRegion() );
m_ImageAdaptor->SetRequestedRegion(
inputImage->GetRequestedRegion() );
m_ImageAdaptor->Allocate();
m_DerivativeFilter->SetInput(inputImage);
// For variable length output pixel types
ImageRegionIteratorWithIndex<OutputImageType> initGradIt(
outputImage, this->m_ImageAdaptor->GetRequestedRegion() );
for ( unsigned int nc = 0; nc < nComponents; ++nc )
{
for ( unsigned int dim = 0; dim < ImageDimension; ++dim )
{
unsigned int i = 0;
int j = 0;
while( i != imageDimensionMinus1 )
{
if( i == dim )
{
++j;
}
m_SmoothingFilters[i]->SetDirection(j);
++i;
++j;
}
m_DerivativeFilter->SetDirection(dim);
GaussianFilterPointer lastFilter;
if ( ImageDimension > 1 )
{
const unsigned int imageDimensionMinus2 = static_cast< unsigned int >( ImageDimension - 2 );
lastFilter = m_SmoothingFilters[imageDimensionMinus2];
lastFilter->UpdateLargestPossibleRegion();
}
else
{
m_DerivativeFilter->UpdateLargestPossibleRegion();
}
// Copy the results to the corresponding component
// on the output image of vectors
m_ImageAdaptor->SelectNthElement(nc*ImageDimension + dim);
typename RealImageType::Pointer derivativeImage;
if ( ImageDimension > 1 )
{
derivativeImage = lastFilter->GetOutput();
}
else
{
derivativeImage = m_DerivativeFilter->GetOutput();
}
ImageRegionIteratorWithIndex< RealImageType > it(
derivativeImage,
derivativeImage->GetRequestedRegion() );
ImageRegionIteratorWithIndex< OutputImageAdaptorType > ot(
m_ImageAdaptor,
m_ImageAdaptor->GetRequestedRegion() );
const ScalarRealType spacing = inputImage->GetSpacing()[dim];
it.GoToBegin();
ot.GoToBegin();
while ( !it.IsAtEnd() )
{
OutputComponentType outValue = static_cast<OutputComponentType>( DefaultConvertPixelTraits<InternalRealType>::GetNthComponent( nc, it.Get() / spacing ) );
ot.Set( outValue );
++it;
++ot;
}
}
}
// manually release memory in last filter in the mini-pipeline
if ( ImageDimension > 1 )
{
int temp_dim = static_cast< int >( ImageDimension ) - 2;
m_SmoothingFilters[temp_dim]->GetOutput()->ReleaseData();
}
else
{
m_DerivativeFilter->GetOutput()->ReleaseData();
}
// If the flag for using the input image direction is ON,
// then we apply the direction correction to all the pixels
// of the output gradient image.
if ( this->m_UseImageDirection )
{
OutputImageType *gradientImage = outputImage;
ImageRegionIterator< OutputImageType > itr( gradientImage,
gradientImage->GetRequestedRegion() );
while ( !itr.IsAtEnd() )
{
TransformOutputPixel( itr );
++itr;
}
}
}
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::GenerateOutputInformation()
{
// this methods is overloaded so that if the output image is a
// VectorImage then the correct number of components are set.
Superclass::GenerateOutputInformation();
OutputImageType* output = this->GetOutput();
const typename TInputImage::ConstPointer inputImage( this->GetInput() );
const unsigned int nComponents = inputImage->GetNumberOfComponentsPerPixel() * ImageDimension;
output->SetNumberOfComponentsPerPixel( nComponents );
}
template< typename TInputImage, typename TOutputImage >
void
GradientRecursiveGaussianImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
os << indent << "UseImageDirection : "
<< ( this->m_UseImageDirection ? "On" : "Off" ) << std::endl;
os << "Sigma: " << m_Sigma << std::endl;
}
} // end namespace itk
#endif
|