File: itkDifferenceOfGaussiansGradientTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (190 lines) | stat: -rw-r--r-- 6,331 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


// Native ITK stuff
#include "itkFilterWatcher.h"

// Spatial function stuff
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"

// DOG gradient related stuff
#include "itkBinomialBlurImageFilter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
#include "itkVectorMagnitudeImageFilter.h"

/*
This file tests:
  itkDifferenceOfGaussiansGradientImageFilter
*/

int itkDifferenceOfGaussiansGradientTest(int, char* [] )
{
  const unsigned int dim = 3;

  // Image typedef
  typedef itk::Image< unsigned char, dim > TImageType;

  //-----------------Create a new input image--------------------
  // Image size and spacing parameters
  TImageType::SizeValueType     sourceImageSize[]  = { 20,20,20 };
  TImageType::SpacingValueType  sourceImageSpacing[] = { 1.0,1.0,1.0 };
  TImageType::PointValueType    sourceImageOrigin[] = { 0,0,0 };

  // Creates the sourceImage (but doesn't set the size or allocate memory)
  TImageType::Pointer sourceImage = TImageType::New();
  sourceImage->SetOrigin(sourceImageOrigin);
  sourceImage->SetSpacing(sourceImageSpacing);

  printf("New sourceImage created\n");

  //-----The following block allocates the sourceImage-----

  // Create a size object native to the sourceImage type
  TImageType::SizeType sourceImageSizeObject;
  // Set the size object to the array defined earlier
  sourceImageSizeObject.SetSize( sourceImageSize );
  // Create a region object native to the sourceImage type
  TImageType::RegionType largestPossibleRegion;
  // Resize the region
  largestPossibleRegion.SetSize( sourceImageSizeObject );
  // Set the largest legal region size (i.e. the size of the whole sourceImage) to what we just defined
  sourceImage->SetLargestPossibleRegion( largestPossibleRegion );
  // Set the buffered region
  sourceImage->SetBufferedRegion( largestPossibleRegion );
  // Set the requested region
  sourceImage->SetRequestedRegion( largestPossibleRegion );
  // Now allocate memory for the sourceImage
  sourceImage->Allocate();

  printf("New sourceImage allocated\n");

  // Initialize the image to hold all 0's
  itk::ImageRegionIterator<TImageType> it =
    itk::ImageRegionIterator<TImageType>(sourceImage, largestPossibleRegion);

  for(it.GoToBegin(); !it.IsAtEnd(); ++it)
    {
    it.Set(0);
    }

  //---------Create and initialize a spatial function-----------

  typedef itk::SphereSpatialFunction<dim> TFunctionType;
  typedef TFunctionType::InputType        TFunctionPositionType;

  // Create and initialize a new sphere function

  TFunctionType::Pointer spatialFunc = TFunctionType::New();
  spatialFunc->SetRadius( 5 );

  TFunctionPositionType center;
  center[0]=10;
  center[1]=10;
  center[2]=10;
  spatialFunc->SetCenter(center);

  printf("Sphere spatial function created\n");

  //---------Create and initialize a spatial function iterator-----------
  TImageType::IndexType seedPos;
  const TImageType::IndexValueType pos[] = {10,10,10};
  seedPos.SetIndex(pos);

  typedef itk::FloodFilledSpatialFunctionConditionalIterator
    <TImageType, TFunctionType> TItType;
  TItType sfi = TItType(sourceImage, spatialFunc, seedPos);

  // for coverage, recover the seeds
  const TItType::SeedsContainerType &seeds(sfi.GetSeeds());
  //
  // show seed indices
  std::cout << "Seeds for FloodFilledSpatialFunctionConditionalIterator"
            << std::endl;
  for(TItType::SeedsContainerType::const_iterator s_it
        = seeds.begin();
      s_it != seeds.end(); ++s_it)
    {
    std::cout << (*s_it) << " ";
    }
  std::cout << std::endl;

  // Iterate through the entire image and set interior pixels to 255
  for(; !( sfi.IsAtEnd() ); ++sfi)
    {
    sfi.Set(255);
    }

  std::cout << "Spatial function iterator created, sphere drawn"
            << std::endl;

  //--------------------Do blurring----------------
  typedef TImageType TOutputType;

  // Create a binomial blur filter
  itk::BinomialBlurImageFilter<TImageType, TOutputType>::Pointer binfilter;
  binfilter = itk::BinomialBlurImageFilter<TImageType, TOutputType>::New();

  sourceImage->SetRequestedRegion(sourceImage->GetLargestPossibleRegion() );

  // Set filter parameters
  binfilter->SetInput(sourceImage);
  binfilter->SetRepetitions(4);

  // Set up the output of the filter
  TImageType::Pointer blurredImage = binfilter->GetOutput();

  // Execute the filter
  binfilter->Update();
  std::cout << "Binomial blur filter updated"
            << std::endl;

  //------------Finally we can test the DOG filter------------

  // Create a differennce of gaussians gradient filter
  typedef itk::DifferenceOfGaussiansGradientImageFilter<TOutputType,
    double> TDOGFilterType;
  TDOGFilterType::Pointer DOGFilter = TDOGFilterType::New();
  FilterWatcher watcher(DOGFilter);

  // We're filtering the output of the binomial filter
  DOGFilter->SetInput(blurredImage);

  // Test the get/set macro for width
  DOGFilter->SetWidth(4);
  unsigned int theWidth = DOGFilter->GetWidth();
  std::cout << "DOGFilter->GetWidth(): " << theWidth << std::endl;

  // Get the output of the gradient filter
  TDOGFilterType::TOutputImage::Pointer gradientImage = DOGFilter->GetOutput();

  // Go!
  DOGFilter->Update();

  //-------------Test vector magnitude-------------
  typedef itk::VectorMagnitudeImageFilter<TDOGFilterType::TOutputImage,
    itk::Image<unsigned char, dim> > VectorMagType;

  VectorMagType::Pointer vectorMagFilter = VectorMagType::New();

  vectorMagFilter->SetInput(gradientImage);
  vectorMagFilter->Update();

  return EXIT_SUCCESS;
}