1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkSimpleFilterWatcher.h"
template<typename TImage1Type,typename TImage2Type>
class ImageInformationIsEqual
{
public:
static bool Check(const TImage1Type * image1, const TImage2Type * image2)
{
if (image1->GetSpacing() != image2->GetSpacing())
{
return false;
}
if (image1->GetOrigin() != image2->GetOrigin())
{
return false;
}
if (image1->GetDirection() != image2->GetDirection())
{
return false;
}
return true;
}
};
int itkGradientMagnitudeRecursiveGaussianFilterTest(int, char* [] )
{
// Define the dimension of the images
const unsigned int myDimension = 3;
// Declare the types of the images
typedef itk::Image<float, myDimension> myImageType;
// Declare the type of the index to access images
typedef itk::Index<myDimension> myIndexType;
// Declare the type of the size
typedef itk::Size<myDimension> mySizeType;
// Declare the type of the Region
typedef itk::ImageRegion<myDimension> myRegionType;
// Create the image
myImageType::Pointer inputImage = myImageType::New();
// Define their size, and start index
mySizeType size;
size[0] = 8;
size[1] = 8;
size[2] = 8;
myIndexType start;
start.Fill(0);
myRegionType region;
region.SetIndex( start );
region.SetSize( size );
// Initialize Image A
inputImage->SetLargestPossibleRegion( region );
inputImage->SetBufferedRegion( region );
inputImage->SetRequestedRegion( region );
inputImage->Allocate();
// Set the metadata for the image
myImageType::PointType origin;
myImageType::SpacingType spacing;
myImageType::DirectionType direction;
origin[0] = 1.0; origin[1] = 2.0; origin[2] = 3.0;
spacing[0] = .1; spacing[1] = .2; spacing[2] = .3;
direction.SetIdentity();
direction(1,1) = -1.0;
inputImage->SetSpacing(spacing);
inputImage->SetOrigin(origin);
inputImage->SetDirection(direction);
// Declare Iterator type for the input image
typedef itk::ImageRegionIteratorWithIndex<myImageType> myIteratorType;
// Create one iterator for the Input Image A (this is a light object)
myIteratorType it( inputImage, inputImage->GetRequestedRegion() );
// Initialize the content of Image A
while( !it.IsAtEnd() )
{
it.Set( 0.0 );
++it;
}
size[0] = 4;
size[1] = 4;
size[2] = 4;
start[0] = 2;
start[1] = 2;
start[2] = 2;
// Create one iterator for an internal region
region.SetSize( size );
region.SetIndex( start );
myIteratorType itb( inputImage, region );
// Initialize the content the internal region
while( !itb.IsAtEnd() )
{
itb.Set( 100.0 );
++itb;
}
// Declare the type for the
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
myImageType > myFilterType;
typedef myFilterType::OutputImageType myGradientImageType;
// Create a Filter
myFilterType::Pointer filter = myFilterType::New();
itk::SimpleFilterWatcher watcher(filter);
// Connect the input images
filter->SetInput( inputImage );
// Select the value of Sigma
filter->SetSigma( 2.5 );
// Execute the filter
try
{
filter->Update();
}
catch(...)
{
std::cerr << "Exception thrown during Update() " << std::endl;
return EXIT_FAILURE;
}
// Get the Smart Pointer to the Filter Output
// It is important to do it AFTER the filter is Updated
// Because the object connected to the output may be changed
// by another during GenerateData() call
myGradientImageType::Pointer outputImage = filter->GetOutput();
// Declare Iterator type for the output image
typedef itk::ImageRegionIteratorWithIndex<
myGradientImageType> myOutputIteratorType;
// Create an iterator for going through the output image
myOutputIteratorType itg( outputImage,
outputImage->GetRequestedRegion() );
// Print the content of the result image
std::cout << " Result " << std::endl;
itg.GoToBegin();
while( !itg.IsAtEnd() )
{
std::cout << itg.Get() << std::endl;
++itg;
}
if (!ImageInformationIsEqual<myImageType,myImageType>::Check(inputImage, outputImage))
{
std::cout << "ImageInformation mismatch!" << std::endl;
std::cout << "inputImage Origin: " << inputImage->GetOrigin() << std::endl;
std::cout << "outputImage Origin: " << outputImage->GetOrigin() << std::endl;
std::cout << "inputImage Spacing: " << inputImage->GetSpacing() << std::endl;
std::cout << "outputImage Spacing: " << outputImage->GetSpacing() << std::endl;
std::cout << "inputImage Direction: " << inputImage->GetDirection() << std::endl;
std::cout << "outputImage Direction: " << outputImage->GetDirection() << std::endl;
return EXIT_FAILURE;
}
// check that the same filter is able to run on a smaller image
size.Fill( 5 );
region.SetSize( size );
inputImage->SetRegions( region );
inputImage->Allocate();
inputImage->FillBuffer( 1 );
// Execute the filter
try
{
filter->UpdateLargestPossibleRegion();
}
catch(...)
{
std::cerr << "Exception thrown during Update() " << std::endl;
return EXIT_FAILURE;
}
// All objects should be automatically destroyed at this point
std::cout << std::endl << "Test PASSED ! " << std::endl;
return EXIT_SUCCESS;
}
|