File: itkGradientRecursiveGaussianFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (184 lines) | stat: -rw-r--r-- 5,248 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkSimpleFilterWatcher.h"

int itkGradientRecursiveGaussianFilterTest(int, char* [] )
{

  // Define the dimension of the images
  const unsigned int myDimension = 3;

  // Declare the types of the images
  typedef itk::Image<float, myDimension>           myImageType;

  // Declare the type of the index to access images
  typedef itk::Index<myDimension>             myIndexType;

  // Declare the type of the size
  typedef itk::Size<myDimension>              mySizeType;

  // Declare the type of the Region
  typedef itk::ImageRegion<myDimension>        myRegionType;

  // Create the image
  myImageType::Pointer inputImage  = myImageType::New();


  // Define their size, and start index
  mySizeType size;
  size[0] = 8;
  size[1] = 8;
  size[2] = 8;

  myIndexType start;
  start.Fill(0);

  myRegionType region;
  region.SetIndex( start );
  region.SetSize( size );

  // Initialize Image A
  inputImage->SetLargestPossibleRegion( region );
  inputImage->SetBufferedRegion( region );
  inputImage->SetRequestedRegion( region );
  inputImage->Allocate();

  // Declare Iterator type for the input image
  typedef itk::ImageRegionIteratorWithIndex<myImageType>  myIteratorType;

  // Create one iterator for the Input Image A (this is a light object)
  myIteratorType it( inputImage, inputImage->GetRequestedRegion() );

  // Initialize the content of Image A
  while( !it.IsAtEnd() )
    {
    it.Set( 0.0 );
    ++it;
    }

  size[0] = 4;
  size[1] = 4;
  size[2] = 4;

  start[0] = 2;
  start[1] = 2;
  start[2] = 2;

  // Create one iterator for an internal region
  myRegionType innerRegion;
  innerRegion.SetSize( size );
  innerRegion.SetIndex( start );
  myIteratorType itb( inputImage, innerRegion );

  // Initialize the content the internal region
  while( !itb.IsAtEnd() )
    {
    itb.Set( 100.0 );
    ++itb;
    }

  // Declare the type for the
  typedef itk::GradientRecursiveGaussianImageFilter< myImageType >  myFilterType;

  typedef myFilterType::OutputImageType myGradientImageType;


  // Create a  Filter
  myFilterType::Pointer filter = myFilterType::New();
  itk::SimpleFilterWatcher watcher(filter);

  // Connect the input images
  filter->SetInput( inputImage );

  // Select the value of Sigma
  filter->SetSigma( 2.5 );


  // Execute the filter
  filter->Update();

  // Get the Smart Pointer to the Filter Output
  // It is important to do it AFTER the filter is Updated
  // Because the object connected to the output may be changed
  // by another during GenerateData() call
  myGradientImageType::Pointer outputImage = filter->GetOutput();

  // Declare Iterator type for the output image
  typedef itk::ImageRegionIteratorWithIndex<myGradientImageType>  myOutputIteratorType;

  // Create an iterator for going through the output image
  myOutputIteratorType itg( outputImage, outputImage->GetRequestedRegion() );

  //  Print the content of the result image
  std::cout << " Result " << std::endl;
  itg.GoToBegin();
  while( !itg.IsAtEnd() )
    {
    std::cout << itg.Get();
    ++itg;
    }
  std::cout << std::endl;

  //
  // Test with a change in image direction
  //
  myImageType::DirectionType direction;
  direction.Fill( 0.0 );
  direction[0][0] = -1.0;
  direction[1][1] = -1.0;
  direction[2][2] = -1.0;
  inputImage->SetDirection( direction );

  // Create a  Filter
  myFilterType::Pointer filter2 = myFilterType::New();
  filter2->SetInput( inputImage );
  filter2->SetSigma( 2.5 );
  filter2->Update();
  myGradientImageType::Pointer outputFlippedImage = filter2->GetOutput();

  // compare the output between identity direction and flipped direction
  std::cout << " Result of flipped image " << std::endl;
  myOutputIteratorType itf( outputFlippedImage, outputFlippedImage->GetRequestedRegion() );
  itf.GoToBegin();
  bool passed = true;
  while( !itf.IsAtEnd() )
    {
    std::cout << itf.Get();
    myImageType::IndexType index;
    for( unsigned int d = 0; d < myDimension; d++ )
      {
      index[d] = region.GetSize()[d] - 1 - itf.GetIndex()[d];
      }
    if( itf.Value() != outputImage->GetPixel( index ) )
      {
      passed = false;
      }
    ++itf;
    }
  std::cout << std::endl;
  if( ! passed )
    {
    std::cerr << "Flipped image gradient does not match regular image as expected." << std::endl;
    return EXIT_FAILURE;
    }

  // All objects should be automatically destroyed at this point
  return EXIT_SUCCESS;
}