File: itkBSplineResampleImageFilterBase.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (635 lines) | stat: -rw-r--r-- 19,338 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
/*=========================================================================
 *
 *  Portions of this file are subject to the VTK Toolkit Version 3 copyright.
 *
 *  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 *
 *  For complete copyright, license and disclaimer of warranty information
 *  please refer to the NOTICE file at the top of the ITK source tree.
 *
 *=========================================================================*/
#ifndef itkBSplineResampleImageFilterBase_hxx
#define itkBSplineResampleImageFilterBase_hxx

#include "itkBSplineResampleImageFilterBase.h"

namespace itk
{
/**
 * Constructor
 */
template< typename TInputImage, typename TOutputImage >
BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::BSplineResampleImageFilterBase()
{
  m_SplineOrder = -1;
  int SplineOrder = 0;
  // Because of inheritance the user must explicitly set this for m_SplineOrder
  // != 0.
  this->SetSplineOrder(SplineOrder);
}

/**
 * Standard "PrintSelf" method
 */
template< typename TInputImage, typename TOutputImage >
void
BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::PrintSelf(
  std::ostream & os,
  Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Spline Order: " << m_SplineOrder << std::endl;
}

/**
 * Intializes the Pyramid Spline Filter parameters for an "l2" filter
 */
template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::InitializePyramidSplineFilter(int SplineOrder)
{
  switch ( SplineOrder )
    {
    case 0:
      m_GSize = 1;
      m_HSize = 1;
      break;

    case 1:
      m_GSize = 9;
      m_HSize = 2;
      m_G.resize(m_GSize);
      m_H.resize(m_HSize);
      m_G[0]  =  0.707107;
      m_G[1]  =  0.292893;
      m_G[2]  = -0.12132;
      m_G[3]  = -0.0502525;
      m_G[4]  =  0.0208153;
      m_G[5]  =  0.00862197;
      m_G[6]  = -0.00357134;
      m_G[7]  = -0.0014793;
      m_G[8]  =  0.000612745;
      m_H[0]  = 1.;
      m_H[1]  = 0.5;
      break;
    case 2:
      m_GSize = 16;
      m_HSize = 10;
      m_G.resize(m_GSize);
      m_H.resize(m_HSize);
      m_G[0]  =  0.617317;
      m_G[1]  =  0.310754;
      m_G[2]  = -0.0949641;
      m_G[3]  = -0.0858654;
      m_G[4]  =  0.0529153;
      m_G[5]  =  0.0362437;
      m_G[6]  = -0.0240408;
      m_G[7]  = -0.0160987;
      m_G[8]  =  0.0107498;
      m_G[9]  =  0.00718418;
      m_G[10] = -0.00480004;
      m_G[11] = -0.00320734;
      m_G[12] =  0.00214306;
      m_G[13] =  0.00143195;
      m_G[14] = -0.0009568;
      m_G[15] = -0.000639312;
      m_H[0]  =  1.;
      m_H[1]  =  0.585786;
      m_H[2]  =  0;
      m_H[3]  = -0.100505;
      m_H[4]  =  0;
      m_H[5]  =  0.0172439;
      m_H[6]  =  0;
      m_H[7]  = -0.00295859;
      m_H[8]  =  0;
      m_H[9]  =  0.000507614;
      break;
    case 3:
      m_GSize = 20;
      m_HSize = 12;
      m_G.resize(m_GSize);
      m_H.resize(m_HSize);
      m_G[0]  =  0.596797;
      m_G[1]  =  0.313287;
      m_G[2]  = -0.0827691;
      m_G[3]  = -0.0921993;
      m_G[4]  =  0.0540288;
      m_G[5]  =  0.0436996;
      m_G[6]  = -0.0302508;
      m_G[7]  = -0.0225552;
      m_G[8]  =  0.0162251;
      m_G[9]  =  0.0118738;
      m_G[10] = -0.00861788;
      m_G[11] = -0.00627964;
      m_G[12] =  0.00456713;
      m_G[13] =  0.00332464;
      m_G[14] = -0.00241916;
      m_G[15] = -0.00176059;
      m_G[16] =  0.00128128;
      m_G[17] =  0.000932349;
      m_G[18] = -0.000678643;
      m_G[19] = -0.000493682;
      m_H[0]  =  1.;
      m_H[1]  =  0.600481;
      m_H[2]  =  0;
      m_H[3]  = -0.127405;
      m_H[4]  =  0;
      m_H[5]  =  0.034138;
      m_H[6]  =  0;
      m_H[7]  = -0.00914725;
      m_H[8]  =  0;
      m_H[9]  =  0.002451;
      m_H[10] =  0;
      m_H[11] = -0.000656743;
      break;
    default:
      // Throw an exception
      ExceptionObject err(__FILE__, __LINE__);
      err.SetLocation(ITK_LOCATION);
      err.SetDescription(
        "SplineOrder for l2 pyramid filter must be between 1 and 3. Requested spline order has not been implemented.");
      throw err;
      break;
    }
}

template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::SetSplineOrder(int splineOrder)
{
  if ( splineOrder == m_SplineOrder )
    {
    return;
    }
  m_SplineOrder = splineOrder;

  this->InitializePyramidSplineFilter(m_SplineOrder);
  this->Modified();
}

/** Reduce1DImage - reduces the vector of data (in) by a
 *     factor of 2 and writes the results to the location specified
 *     by the Iterator (out).  inTraverseSize is the size of the in vector.
 */
template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::Reduce1DImage(const std::vector< double > & in,   OutputImageIterator & out,
                unsigned int inTraverseSize, ProgressReporter & progress)
{
  int i1, i2;

  unsigned int outK, inK;
  unsigned int outTraverseSize = inTraverseSize / 2;

  inTraverseSize = outTraverseSize * 2; // ensures that an even number is used.
  unsigned int inModK;                  // number for modulus math of in
  inModK = inTraverseSize - 1;

  double outVal;

  //TODO:  m_GSize < 2 has not been tested.
  if ( m_GSize < 2 )
    {
    for ( outK = 0; outK < outTraverseSize; outK++ )
      {
      inK = 2 * outK;
      i2 = inK + 1;
      if ( i2 > (int)inModK )
        {
        //Original was
        //i2=inModK-i2;
        //I don't think this is correct since this would be negative
        i2 = inModK - ( i2 % inModK );  // Should I use this always instead of
                                        // the if statement?
        }
      out.Set( static_cast< OutputImagePixelType >( ( in[inK] + in[i2] ) / 2.0 ) );
      ++out;
      progress.CompletedPixel();
      }
    }

  else
    {
    for ( outK = 0; outK < outTraverseSize; outK++ )
      {
      inK = 2L * outK;

      outVal = in[inK] * m_G[0];

      for ( int i = 1; i < m_GSize; i++ )
        {
        // Calculate indices for left and right of symmetrical filter.
        i1 = inK - i;
        i2 = inK + i;
        // reflect at boundaries if necessary
        if ( i1 < 0 )
          {
          i1 = ( -i1 ) % inModK;
          // Removed because i1 can never be greater than inModK, right?
          //if (i1 > inModK)
          //i1=inModK-i1;  //TODO: I don't think this is correct.
          }
        if ( i2 > (int)inModK )
          {
          if (inModK)
            {
            i2 = i2 % inModK;
            }
          // Removed because i1 can never be greater than inModK, right?
          //if (i2 > inModK)
          //i2=inModK-i2;  //TODO: I don't think this is correct.
          }
        outVal = outVal + m_G[i] * ( in[i1] + in[i2] );
        }
      out.Set( static_cast< OutputImagePixelType >( outVal ) );
      ++out;
      progress.CompletedPixel();
      }
    }
}

/** Expand1DImage - expands the vector of data (in) by a
 *     factor of 2 and writes the results to the location specified
 *     by the Iterator (out).  inTraverseSize is the size of the in vector.
 */
template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::Expand1DImage(const std::vector< double > & in, OutputImageIterator & out,
                unsigned int inTraverseSize, ProgressReporter & progress)
{
  int i1, i2;

  int          outK;
  unsigned int inK;
  unsigned int outTraverseSize = inTraverseSize * 2;
  //inTraverseSize = outTraverseSize/2;  // ensures that an even number is used.
  int inModK; // number for modulus math of in

  inModK = inTraverseSize - 1;

  double outVal;

  //TODO:  m_GSize < 2 has not been tested.
  if ( m_HSize < 2 )
    {
    for ( inK = 0; inK < inTraverseSize; inK++ )
      {
      out.Set( static_cast< OutputImagePixelType >( in[inK] ) );
      ++out;
      out.Set( static_cast< OutputImagePixelType >( in[inK] ) );
      ++out;
      }
    progress.CompletedPixel();
    }

  else
    {
    for ( outK = 0; outK < (int)outTraverseSize; outK++ )
      {
      outVal = 0.0;
      for ( int k = ( outK % 2 ); k < (int)m_HSize; k += 2 )
        {
        i1 = ( outK - k ) / 2;
        if ( i1 < 0 )
          {
          i1 = ( -i1 ) % inModK;
          // The following could never happen therefore removed.
          //if (i1 > inModK)
          //i1 - inModK - i1;
          }
        outVal = outVal + m_H[k] * in[i1];
        }
      for ( int k = 2 - ( outK % 2 ); k < (int)m_HSize; k += 2 )
        {
        i2 = ( outK + k ) / 2;
        if ( i2 > inModK )
          {
          i2 = i2 % inModK;
          i2 = inModK - i2;
          // The following could never happen therefore removed.
          //if (i2 > inModK)
          //i2 - inModK - i2;
          }
        outVal += m_H[k] * in[i2];
        }

      out.Set( static_cast< OutputImagePixelType >( outVal ) );
      ++out;
      progress.CompletedPixel();
      }
    }
}

/**  Reduce an Image by a factor of 2 in each dimension.
 */
template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::ReduceNDImage(OutputImageIterator & outItr)
{
  // Set up variables for waking the image regions.
  RegionType validRegion;
  SizeType   startSize;
  SizeType   currentSize;

  // Does not support streaming
  typename Superclass::InputImagePointer inputPtr = const_cast< TInputImage * >( this->GetInput() );
  startSize = inputPtr->GetBufferedRegion().GetSize();

  // Initialize scratchImage space and allocate memory
  InitializeScratch(startSize);
  typename TOutputImage::Pointer scratchImage;
  scratchImage =  TOutputImage::New();
  scratchImage->CopyInformation(inputPtr);
  RegionType scratchRegion;
  scratchRegion = inputPtr->GetBufferedRegion();
  currentSize = startSize;
  // scratchImage only needs the 1/2 the space of the original
  // image for the first dimension.
  // TODO: Is dividing by 2 correct or do I need something more complicated for
  // handling odd dimensioned
  //       images?  i.e. is the rounding handled correctly?
  currentSize[0] = currentSize[0] / 2;
  scratchRegion.SetSize(currentSize);
  scratchImage->SetRegions(scratchRegion);
  scratchImage->Allocate();

  currentSize = startSize;
  validRegion.SetSize(currentSize);
  validRegion.SetIndex ( inputPtr->GetBufferedRegion().GetIndex() );

  /** The data is handled in this routine to minimize data copying.
   * Alternative methods could be used which may permit the use of
   * streaming. On the first dimension the inIterator points to the
   * TInputImage and the outIterator points to the ScratchImage.  After
   * the first dimension the inIterator points to the ScratchImage (the
   * outIterator points to ScratchImage also).  The variable m_Scratch is
   * used to pass a single line for processing so that overwriting does
   * not occur.  On the final iteration outIterator points to the
   * OutputImage for direct writing into the final variable. */

  // The first time through the loop our input image is inputPtr
  typename TInputImage::ConstPointer workingImage;
  workingImage = inputPtr;

  unsigned int     count = scratchRegion.GetNumberOfPixels() * ImageDimension;
  ProgressReporter progress(this, 0, count, 10);
  for ( unsigned int n = 0; n < ImageDimension; n++ )
    {
    // Setup iterators for input image.
    ConstInputImageIterator  inIterator1(workingImage, validRegion);
    ConstOutputImageIterator inIterator2(scratchImage, scratchRegion);

    if ( n == 0 )
      {
      // First time through the loop we use the InputImage
      inIterator1.GoToBegin();
      inIterator1.SetDirection(n);
      }
    else
      {
      // After first time through the loop we use the scratch image which is of
      // the output type.
      inIterator2.GoToBegin();
      inIterator2.SetDirection(n);
      }

    // Setup iterators and bounds for output image.
    currentSize[n] = currentSize[n] / 2;  // reduce by a factor of 2
    validRegion.SetSize(currentSize);
    // TODO:  Is there a way to put this in the else statement below?
    OutputImageIterator outIterator(scratchImage, validRegion);
    if ( n == ( ImageDimension - 1 ) )
      {
      // Last time through the loop write directly to the output
      outIterator = outItr;
      }

    outIterator.GoToBegin();
    outIterator.SetDirection(n);

    if ( n == 0 )
      {
      while ( !inIterator1.IsAtEnd() )
        {
        // Copies one line of input to m_Scratch
        this->CopyInputLineToScratch(inIterator1);

        this->Reduce1DImage(m_Scratch, outIterator,  startSize[n], progress);
        inIterator1.NextLine();
        outIterator.NextLine();
        }
      }
    else
      {
      while ( !inIterator2.IsAtEnd() )
        {
        // Copies one line of input to m_Scratch
        this->CopyOutputLineToScratch(inIterator2);

        this->Reduce1DImage(m_Scratch, outIterator,  startSize[n], progress);
        inIterator2.NextLine();
        outIterator.NextLine();
        }
      }

    // After first loop the input image is scratchImage
    //workingImage = scratchImage;
    }
}

/**  Expand an Image by a factor of 2 in each dimension.
*/
template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::ExpandNDImage(OutputImageIterator & outItr)
{
  // Set up variables for waking the image regions.
  RegionType validRegion;
  SizeType   startSize;
  SizeType   currentSize;

  // Does not support streaming
  typename Superclass::InputImagePointer inputPtr = const_cast< TInputImage * >( this->GetInput() );
  startSize = inputPtr->GetBufferedRegion().GetSize();

  // Initialize scratchImage space and allocate memory
  InitializeScratch(startSize);
  typename TOutputImage::Pointer scratchImage;
  scratchImage =  TOutputImage::New();
  scratchImage->CopyInformation(inputPtr);
  RegionType scratchRegion;
  scratchRegion = inputPtr->GetBufferedRegion();
  currentSize = startSize;

  // scratchImage 2 times the space of the original image .

  for ( unsigned int n = 0; n < ImageDimension; n++ )
    {
    currentSize[n] = currentSize[n] * 2;
    }
  scratchRegion.SetSize(currentSize);
  scratchImage->SetBufferedRegion(scratchRegion);
  scratchImage->Allocate();

  currentSize = startSize;
  validRegion.SetSize(currentSize);
  validRegion.SetIndex ( inputPtr->GetBufferedRegion().GetIndex() );

  /** The data is handled in this routine to minimize data copying.  Alternative
      methods could be used which may permit the use of streaming. On the first
      dimension the inIterator points to the TInputImage and the outIterator
      points to the ScratchImage.  After the first dimension the inIterator points
      to the ScratchImage (the outIterator points to ScratchImage also).  The
      variable m_Scratch is used to pass a single line for processing so that
      overwriting does not occur.  On the final iteration outIterator points to
      the OutputImage for direct writing into the final variable.
  **/

  // The first time through the loop our input image is m_Image
  typename TInputImage::ConstPointer workingImage;
  workingImage = inputPtr;

  RegionType workingRegion = validRegion;

  unsigned int     count = scratchRegion.GetNumberOfPixels() * ImageDimension;
  ProgressReporter progress(this, 0, count, 10);
  for ( unsigned int n = 0; n < ImageDimension; n++ )
    {
    // Setup iterators for input image.
    ConstInputImageIterator  inIterator1(workingImage, workingRegion);
    ConstOutputImageIterator inIterator2(scratchImage, validRegion);
    if ( n == 0 )
      {
      // First time through the loop we use the InputImage
      inIterator1.GoToBegin();
      inIterator1.SetDirection(n);
      }
    else
      {
      // After first time through the loop we use the scratch image which is of
      // the output type.
      inIterator2.GoToBegin();
      inIterator2.SetDirection(n);
      }

    // Setup iterators and bounds for output image.
    currentSize[n] = currentSize[n] * 2;  // expand by a factor of 2
    validRegion.SetSize(currentSize);

    OutputImageIterator outIterator(scratchImage, validRegion);
    if ( n == ( ImageDimension - 1 ) )
      {
      // Last time through the loop write directly to the output
      outIterator = outItr;
      }

    outIterator.GoToBegin();
    outIterator.SetDirection(n);

    if ( n == 0 )
      {
      while ( !inIterator1.IsAtEnd() )
        {
        // Copies one line of input to m_Scratch
        this->CopyInputLineToScratch(inIterator1);

        this->Expand1DImage(m_Scratch, outIterator,  startSize[n], progress);
        inIterator1.NextLine();
        outIterator.NextLine();
        }
      }
    else
      {
      while ( !inIterator2.IsAtEnd() )
        {
        // Copies one line of input to m_Scratch
        this->CopyOutputLineToScratch(inIterator2);

        this->Expand1DImage(m_Scratch, outIterator,  startSize[n], progress);
        inIterator2.NextLine();
        outIterator.NextLine();
        }
      }
    }
}

// Allocate scratch space
template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::InitializeScratch(SizeType DataLength)
{
  unsigned int maxLength = 0;

  for ( unsigned int n = 0; n < ImageDimension; n++ )
    {
    if ( DataLength[n] > maxLength )
      {
      maxLength = DataLength[n];
      }
    }
  m_Scratch.resize(maxLength);
}

template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::CopyLineToScratch(ConstInputImageIterator & Iter)
{
  unsigned int j = 0;

  while ( !Iter.IsAtEndOfLine() )
    {
    m_Scratch[j] = static_cast< double >( Iter.Get() );
    ++Iter;
    ++j;
    }
}

template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::CopyInputLineToScratch(ConstInputImageIterator & Iter)
{
  unsigned int j = 0;

  while ( !Iter.IsAtEndOfLine() )
    {
    m_Scratch[j] = static_cast< double >( Iter.Get() );
    ++Iter;
    ++j;
    }
}

template< typename TInputImage, typename TOutputImage >
void BSplineResampleImageFilterBase< TInputImage, TOutputImage >
::CopyOutputLineToScratch(ConstOutputImageIterator & Iter)
{
  unsigned int j = 0;

  while ( !Iter.IsAtEndOfLine() )
    {
    m_Scratch[j] = static_cast< double >( Iter.Get() );
    ++Iter;
    ++j;
    }
}
} // namespace itk

#endif