1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkExpandImageFilter_hxx
#define itkExpandImageFilter_hxx
#include "itkExpandImageFilter.h"
#include "itkImageScanlineIterator.h"
#include "itkObjectFactory.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
namespace itk
{
/**
* Default constructor
*/
template< typename TInputImage, typename TOutputImage >
ExpandImageFilter< TInputImage, TOutputImage >
::ExpandImageFilter()
{
// Set default factors to 1
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
m_ExpandFactors[j] = 1;
}
// Setup the default interpolator
typename DefaultInterpolatorType::Pointer interp =
DefaultInterpolatorType::New();
m_Interpolator = static_cast< InterpolatorType * >(
interp.GetPointer() );
}
/**
* Standard "PrintSelf" method
*/
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
unsigned int j;
os << indent << "ExpandFactors: [";
for ( j = 0; j < ImageDimension - 1; j++ )
{
os << m_ExpandFactors[j] << ", ";
}
os << m_ExpandFactors[j] << "]" << std::endl;
os << indent << "Interpolator: ";
os << m_Interpolator.GetPointer() << std::endl;
}
/**
* Set expand factors from a single unsigned int
*/
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::SetExpandFactors(
const unsigned int factor)
{
unsigned int j;
for ( j = 0; j < ImageDimension; j++ )
{
if ( factor != m_ExpandFactors[j] ) { break; }
}
if ( j < ImageDimension )
{
this->Modified();
for ( j = 0; j < ImageDimension; j++ )
{
m_ExpandFactors[j] = factor;
if ( m_ExpandFactors[j] < 1 ) { m_ExpandFactors[j] = 1; }
}
}
}
/**
* BeforeThreadedGenerateData
*/
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::BeforeThreadedGenerateData()
{
if ( !m_Interpolator || !this->GetInput() )
{
itkExceptionMacro(<< "Interpolator and/or Input not set");
}
// Connect input image to interpolator
m_Interpolator->SetInputImage( this->GetInput() );
}
/**
* ThreadedGenerateData
*/
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
ThreadIdType threadId)
{
// Get the input and output pointers
OutputImagePointer outputPtr = this->GetOutput();
// Iterator for walking the output
typedef ImageScanlineIterator< TOutputImage > OutputIterator;
OutputIterator outIt(outputPtr, outputRegionForThread);
// Report progress on a per scanline basis
const SizeValueType size0 = outputRegionForThread.GetSize(0);
if( size0 == 0)
{
return;
}
const size_t numberOfLinesToProcess = outputRegionForThread.GetNumberOfPixels() / size0;
ProgressReporter progress( this, threadId, static_cast<SizeValueType>( numberOfLinesToProcess ) );
const size_t ln = outputRegionForThread.GetSize(0);
// Walk the output region, and interpolate the input image
while ( !outIt.IsAtEnd() )
{
const typename OutputImageType::IndexType outputIndex = outIt.GetIndex();
// Determine the input pixel location associated with this output
// pixel at the start of the scanline.
//
// Don't need to check for division by zero because the factors are
// clamped to be minimum for 1.
typename InterpolatorType::ContinuousIndexType inputIndex;
for ( unsigned int j = 0; j < ImageDimension; j++ )
{
inputIndex[j] = ( (double)outputIndex[j] + 0.5 ) / (double)m_ExpandFactors[j] - 0.5;
}
const double lineDelta = (double)1.0 / (double)m_ExpandFactors[0];
for( size_t i = 0; i < ln; ++i )
{
itkAssertInDebugAndIgnoreInReleaseMacro(m_Interpolator->IsInsideBuffer(inputIndex));
outIt.Set( static_cast< OutputPixelType >( m_Interpolator->EvaluateAtContinuousIndex(inputIndex) ) );
++outIt;
// Only increment the x-index as the rest is constant per
// scanline.
inputIndex[0] += lineDelta;
}
outIt.NextLine();
progress.CompletedPixel();
}
}
/**
* GenerateInputRequesteRegion
*/
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
// Call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// Get pointers to the input and output
InputImageType * inputPtr =
const_cast< InputImageType * >( this->GetInput() );
const OutputImageType * outputPtr = this->GetOutput();
itkAssertInDebugAndIgnoreInReleaseMacro( inputPtr != ITK_NULLPTR );
itkAssertInDebugAndIgnoreInReleaseMacro( outputPtr );
// We need to compute the input requested region (size and start index)
unsigned int i;
const typename TOutputImage::SizeType & outputRequestedRegionSize =
outputPtr->GetRequestedRegion().GetSize();
const typename TOutputImage::IndexType & outputRequestedRegionStartIndex =
outputPtr->GetRequestedRegion().GetIndex();
typename TInputImage::SizeType inputRequestedRegionSize;
typename TInputImage::IndexType inputRequestedRegionStartIndex;
/**
* inputRequestedSize = (outputRequestedSize / ExpandFactor) + 1)
* The extra 1 above is to take care of edge effects when streaming.
*/
for ( i = 0; i < TInputImage::ImageDimension; i++ )
{
inputRequestedRegionSize[i] =
(SizeValueType)std::ceil( (double)outputRequestedRegionSize[i]
/ (double)m_ExpandFactors[i] ) + 1;
inputRequestedRegionStartIndex[i] =
(SizeValueType)std::floor( (double)outputRequestedRegionStartIndex[i]
/ (double)m_ExpandFactors[i] );
}
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion.SetSize(inputRequestedRegionSize);
inputRequestedRegion.SetIndex(inputRequestedRegionStartIndex);
// Make sure the requested region is within largest possible.
inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() );
// Set the input requested region.
inputPtr->SetRequestedRegion(inputRequestedRegion);
}
/**
* GenerateOutputInformation
*/
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::GenerateOutputInformation()
{
// Call the superclass' implementation of this method
Superclass::GenerateOutputInformation();
// Get pointers to the input and output
const InputImageType * inputPtr = this->GetInput();
OutputImageType * outputPtr = this->GetOutput();
itkAssertInDebugAndIgnoreInReleaseMacro( inputPtr );
itkAssertInDebugAndIgnoreInReleaseMacro( outputPtr != ITK_NULLPTR );
// We need to compute the output spacing, the output image size, and the
// output image start index
const typename TInputImage::SpacingType &
inputSpacing = inputPtr->GetSpacing();
const typename TInputImage::SizeType & inputSize =
inputPtr->GetLargestPossibleRegion().GetSize();
const typename TInputImage::IndexType & inputStartIndex =
inputPtr->GetLargestPossibleRegion().GetIndex();
const typename TInputImage::PointType &
inputOrigin = inputPtr->GetOrigin();
typename TOutputImage::SpacingType outputSpacing;
typename TOutputImage::SizeType outputSize;
typename TOutputImage::IndexType outputStartIndex;
typename TOutputImage::PointType outputOrigin;
typename TInputImage::SpacingType inputOriginShift;
for ( unsigned int i = 0; i < TOutputImage::ImageDimension; i++ )
{
outputSpacing[i] = inputSpacing[i] / (float)m_ExpandFactors[i];
outputSize[i] = inputSize[i] * (SizeValueType)m_ExpandFactors[i];
outputStartIndex[i] = inputStartIndex[i] * (IndexValueType)m_ExpandFactors[i];
const double fraction = (double)( m_ExpandFactors[i] - 1 ) / (double)m_ExpandFactors[i];
inputOriginShift[i] = -( inputSpacing[i] / 2.0 ) * fraction;
}
const typename TInputImage::DirectionType inputDirection = inputPtr->GetDirection();
const typename TOutputImage::SpacingType outputOriginShift = inputDirection * inputOriginShift;
outputOrigin = inputOrigin + outputOriginShift;
outputPtr->SetSpacing(outputSpacing);
outputPtr->SetOrigin(outputOrigin);
typename TOutputImage::RegionType outputLargestPossibleRegion;
outputLargestPossibleRegion.SetSize(outputSize);
outputLargestPossibleRegion.SetIndex(outputStartIndex);
outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}
} // end namespace itk
#endif
|