File: itkExpandImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (299 lines) | stat: -rw-r--r-- 9,451 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkExpandImageFilter_hxx
#define itkExpandImageFilter_hxx

#include "itkExpandImageFilter.h"
#include "itkImageScanlineIterator.h"
#include "itkObjectFactory.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"

namespace itk
{
/**
 * Default constructor
 */
template< typename TInputImage, typename TOutputImage >
ExpandImageFilter< TInputImage, TOutputImage >
::ExpandImageFilter()
{
  // Set default factors to 1
  for ( unsigned int j = 0; j < ImageDimension; j++ )
    {
    m_ExpandFactors[j] = 1;
    }

  // Setup the default interpolator
  typename DefaultInterpolatorType::Pointer interp =
    DefaultInterpolatorType::New();

  m_Interpolator = static_cast< InterpolatorType * >(
    interp.GetPointer() );

}

/**
 * Standard "PrintSelf" method
 */
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  unsigned int j;
  os << indent << "ExpandFactors: [";
  for ( j = 0; j < ImageDimension - 1; j++ )
    {
    os << m_ExpandFactors[j] << ", ";
    }
  os << m_ExpandFactors[j] << "]" << std::endl;

  os << indent << "Interpolator: ";
  os << m_Interpolator.GetPointer() << std::endl;

}

/**
 * Set expand factors from a single unsigned int
 */
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::SetExpandFactors(
  const unsigned int factor)
{
  unsigned int j;

  for ( j = 0; j < ImageDimension; j++ )
    {
    if ( factor != m_ExpandFactors[j] ) { break; }
    }
  if ( j < ImageDimension )
    {
    this->Modified();
    for ( j = 0; j < ImageDimension; j++ )
      {
      m_ExpandFactors[j] = factor;
      if ( m_ExpandFactors[j] < 1 ) { m_ExpandFactors[j] = 1; }
      }
    }
}

/**
 * BeforeThreadedGenerateData
 */
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::BeforeThreadedGenerateData()
{
  if ( !m_Interpolator || !this->GetInput() )
    {
    itkExceptionMacro(<< "Interpolator and/or Input not set");
    }

  // Connect input image to interpolator
  m_Interpolator->SetInputImage( this->GetInput() );
}

/**
 * ThreadedGenerateData
 */
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  // Get the input and output pointers
  OutputImagePointer outputPtr = this->GetOutput();

  // Iterator for walking the output
  typedef ImageScanlineIterator< TOutputImage > OutputIterator;

  OutputIterator outIt(outputPtr, outputRegionForThread);

  // Report progress on a per scanline basis
  const SizeValueType size0 = outputRegionForThread.GetSize(0);
  if( size0 == 0)
    {
    return;
    }
  const size_t numberOfLinesToProcess = outputRegionForThread.GetNumberOfPixels() / size0;
  ProgressReporter progress( this, threadId, static_cast<SizeValueType>( numberOfLinesToProcess ) );

  const size_t ln =  outputRegionForThread.GetSize(0);

  // Walk the output region, and interpolate the input image
  while ( !outIt.IsAtEnd() )
    {
    const typename OutputImageType::IndexType outputIndex = outIt.GetIndex();


    // Determine the input pixel location associated with this output
    // pixel at the start of the scanline.
    //
    // Don't need to check for division by zero because the factors are
    // clamped to be minimum for 1.
    typename InterpolatorType::ContinuousIndexType inputIndex;
    for ( unsigned int j = 0; j < ImageDimension; j++ )
      {
      inputIndex[j] = ( (double)outputIndex[j] + 0.5 ) / (double)m_ExpandFactors[j] - 0.5;
      }

    const double lineDelta = (double)1.0 / (double)m_ExpandFactors[0];

    for( size_t i = 0; i < ln; ++i )
      {


      itkAssertInDebugAndIgnoreInReleaseMacro(m_Interpolator->IsInsideBuffer(inputIndex));

      outIt.Set( static_cast< OutputPixelType >( m_Interpolator->EvaluateAtContinuousIndex(inputIndex) ) );
      ++outIt;

      // Only increment the x-index as the rest is constant per
      // scanline.
      inputIndex[0] += lineDelta;
      }

    outIt.NextLine();
    progress.CompletedPixel();
    }
}

/**
 * GenerateInputRequesteRegion
 */
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // Call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // Get pointers to the input and output
  InputImageType * inputPtr =
    const_cast< InputImageType * >( this->GetInput() );
  const OutputImageType * outputPtr = this->GetOutput();

  itkAssertInDebugAndIgnoreInReleaseMacro( inputPtr != ITK_NULLPTR );
  itkAssertInDebugAndIgnoreInReleaseMacro( outputPtr );

  // We need to compute the input requested region (size and start index)
  unsigned int i;
  const typename TOutputImage::SizeType & outputRequestedRegionSize =
    outputPtr->GetRequestedRegion().GetSize();
  const typename TOutputImage::IndexType & outputRequestedRegionStartIndex =
    outputPtr->GetRequestedRegion().GetIndex();

  typename TInputImage::SizeType inputRequestedRegionSize;
  typename TInputImage::IndexType inputRequestedRegionStartIndex;

  /**
   * inputRequestedSize = (outputRequestedSize / ExpandFactor) + 1)
   * The extra 1 above is to take care of edge effects when streaming.
   */
  for ( i = 0; i < TInputImage::ImageDimension; i++ )
    {
    inputRequestedRegionSize[i] =
      (SizeValueType)std::ceil( (double)outputRequestedRegionSize[i]
                      / (double)m_ExpandFactors[i] ) + 1;

    inputRequestedRegionStartIndex[i] =
      (SizeValueType)std::floor( (double)outputRequestedRegionStartIndex[i]
                       / (double)m_ExpandFactors[i] );
    }

  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion.SetSize(inputRequestedRegionSize);
  inputRequestedRegion.SetIndex(inputRequestedRegionStartIndex);

  // Make sure the requested region is within largest possible.
  inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() );

  // Set the input requested region.
  inputPtr->SetRequestedRegion(inputRequestedRegion);
}

/**
 * GenerateOutputInformation
 */
template< typename TInputImage, typename TOutputImage >
void
ExpandImageFilter< TInputImage, TOutputImage >
::GenerateOutputInformation()
{
  // Call the superclass' implementation of this method
  Superclass::GenerateOutputInformation();

  // Get pointers to the input and output
  const InputImageType * inputPtr = this->GetInput();
  OutputImageType * outputPtr = this->GetOutput();

  itkAssertInDebugAndIgnoreInReleaseMacro( inputPtr );
  itkAssertInDebugAndIgnoreInReleaseMacro( outputPtr != ITK_NULLPTR );

  // We need to compute the output spacing, the output image size, and the
  // output image start index
  const typename TInputImage::SpacingType &
  inputSpacing = inputPtr->GetSpacing();
  const typename TInputImage::SizeType &   inputSize =
    inputPtr->GetLargestPossibleRegion().GetSize();
  const typename TInputImage::IndexType &  inputStartIndex =
    inputPtr->GetLargestPossibleRegion().GetIndex();
  const typename TInputImage::PointType &
  inputOrigin = inputPtr->GetOrigin();

  typename TOutputImage::SpacingType outputSpacing;
  typename TOutputImage::SizeType outputSize;
  typename TOutputImage::IndexType outputStartIndex;
  typename TOutputImage::PointType outputOrigin;

  typename TInputImage::SpacingType inputOriginShift;

  for ( unsigned int i = 0; i < TOutputImage::ImageDimension; i++ )
    {
    outputSpacing[i] = inputSpacing[i] / (float)m_ExpandFactors[i];
    outputSize[i] = inputSize[i] * (SizeValueType)m_ExpandFactors[i];
    outputStartIndex[i] = inputStartIndex[i] * (IndexValueType)m_ExpandFactors[i];
    const double fraction = (double)( m_ExpandFactors[i] - 1 ) / (double)m_ExpandFactors[i];
    inputOriginShift[i] = -( inputSpacing[i] / 2.0 ) * fraction;
    }

  const typename TInputImage::DirectionType inputDirection = inputPtr->GetDirection();
  const typename TOutputImage::SpacingType outputOriginShift = inputDirection * inputOriginShift;

  outputOrigin = inputOrigin + outputOriginShift;

  outputPtr->SetSpacing(outputSpacing);
  outputPtr->SetOrigin(outputOrigin);

  typename TOutputImage::RegionType outputLargestPossibleRegion;
  outputLargestPossibleRegion.SetSize(outputSize);
  outputLargestPossibleRegion.SetIndex(outputStartIndex);

  outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}
} // end namespace itk

#endif