File: itkShrinkImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (355 lines) | stat: -rw-r--r-- 11,883 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
/*=========================================================================
 *
 *  Portions of this file are subject to the VTK Toolkit Version 3 copyright.
 *
 *  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 *
 *  For complete copyright, license and disclaimer of warranty information
 *  please refer to the NOTICE file at the top of the ITK source tree.
 *
 *=========================================================================*/
#ifndef itkShrinkImageFilter_hxx
#define itkShrinkImageFilter_hxx

#include "itkShrinkImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkContinuousIndex.h"
#include "itkObjectFactory.h"
#include "itkProgressReporter.h"

namespace itk
{
/**
 *
 */
template< typename TInputImage, typename TOutputImage >
ShrinkImageFilter< TInputImage, TOutputImage >
::ShrinkImageFilter()
{
  for ( unsigned int j = 0; j < ImageDimension; j++ )
    {
    m_ShrinkFactors[j] = 1;
    }
}

/**
 *
 */
template< typename TInputImage, typename TOutputImage >
void
ShrinkImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Shrink Factor: ";
  for ( unsigned int j = 0; j < ImageDimension; j++ )
    {
    os << m_ShrinkFactors[j] << " ";
    }
  os << std::endl;
}

/**
 *
 */
template< typename TInputImage, typename TOutputImage >
void
ShrinkImageFilter< TInputImage, TOutputImage >
::SetShrinkFactors(unsigned int factor)
{
  unsigned int j;

  for ( j = 0; j < ImageDimension; j++ )
    {
    if ( factor != m_ShrinkFactors[j] ) { break; }
    }
  if ( j < ImageDimension )
    {
    this->Modified();
    for ( j = 0; j < ImageDimension; j++ )
      {
      m_ShrinkFactors[j] = factor;
      if ( m_ShrinkFactors[j] < 1 )
        {
        m_ShrinkFactors[j] = 1;
        }
      }
    }
}


template< typename TInputImage, typename TOutputImage >
void
ShrinkImageFilter< TInputImage, TOutputImage >
::SetShrinkFactor(unsigned int i, unsigned int factor)
{
  if ( m_ShrinkFactors[i] == factor )
    {
    return;
    }

  this->Modified();
  m_ShrinkFactors[i] = factor;
}


/**
 *
 */
template< typename TInputImage, typename TOutputImage >
void
ShrinkImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  // Get the input and output pointers
  InputImageConstPointer inputPtr = this->GetInput();
  OutputImagePointer     outputPtr = this->GetOutput();

  // Convert the factor for convenient multiplication
  unsigned int i;

  typename TOutputImage::SizeType factorSize;
  for ( i = 0; i < TInputImage::ImageDimension; i++ )
    {
    factorSize[i] = m_ShrinkFactors[i];
    }

  // Define a few indices that will be used to transform from an input pixel
  // to an output pixel
  OutputIndexType  outputIndex;
  InputIndexType   inputIndex;
  OutputOffsetType offsetIndex;

  typename TOutputImage::PointType tempPoint;

  // Use this index to compute the offset everywhere in this class
  outputIndex = outputPtr->GetLargestPossibleRegion().GetIndex();

  // We wish to perform the following mapping of outputIndex to
  // inputIndex on all points in our region
  outputPtr->TransformIndexToPhysicalPoint(outputIndex, tempPoint);
  inputPtr->TransformPhysicalPointToIndex(tempPoint, inputIndex);

  // Given that the size is scaled by a constant factor eq:
  // inputIndex = outputIndex * factorSize
  // is equivalent up to a fixed offset which we now compute
  OffsetValueType zeroOffset = 0;
  for ( i = 0; i < TInputImage::ImageDimension; i++ )
    {
    offsetIndex[i] = inputIndex[i] - outputIndex[i] * m_ShrinkFactors[i];
    // It is plausible that due to small amounts of loss of numerical
    // precision that the offset it negaive, this would cause sampling
    // out of out region, this is insurance against that possibility
    offsetIndex[i] = std::max(zeroOffset, offsetIndex[i]);
    }

  // Support progress methods/callbacks
  ProgressReporter progress( this, threadId, outputRegionForThread.GetNumberOfPixels() );

  // Define/declare an iterator that will walk the output region for this
  // thread.
  typedef ImageRegionIteratorWithIndex< TOutputImage > OutputIterator;
  OutputIterator outIt(outputPtr, outputRegionForThread);

  while ( !outIt.IsAtEnd() )
    {
    // Determine the index and physical location of the output pixel
    outputIndex = outIt.GetIndex();

    // An optimized version of
    // outputPtr->TransformIndexToPhysicalPoint(outputIndex, tempPoint);
    // inputPtr->TransformPhysicalPointToIndex(tempPoint, inputIndex);
    // but without the rounding and precision issues
    inputIndex = outputIndex * factorSize + offsetIndex;

    // Copy the input pixel to the output
    outIt.Set( inputPtr->GetPixel(inputIndex) );
    ++outIt;

    progress.CompletedPixel();
    }
}

/**
 *
 */
template< typename TInputImage, typename TOutputImage >
void
ShrinkImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // Call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // Get pointers to the input and output
  InputImageType * inputPtr =
    const_cast< InputImageType * >( this->GetInput() );
  const OutputImageType * outputPtr = this->GetOutput();

  itkAssertInDebugAndIgnoreInReleaseMacro( inputPtr != ITK_NULLPTR );
  itkAssertInDebugAndIgnoreInReleaseMacro( outputPtr );

  // Compute the input requested region (size and start index)
  // Use the image transformations to insure an input requested region
  // that will provide the proper range
  unsigned int i;
  const typename TOutputImage::SizeType & outputRequestedRegionSize =
    outputPtr->GetRequestedRegion().GetSize();
  const typename TOutputImage::IndexType & outputRequestedRegionStartIndex =
    outputPtr->GetRequestedRegion().GetIndex();

  // Convert the factor for convenient multiplication
  typename TOutputImage::SizeType factorSize;
  for ( i = 0; i < TInputImage::ImageDimension; i++ )
    {
    factorSize[i] = m_ShrinkFactors[i];
    }

  OutputIndexType  outputIndex;
  InputIndexType   inputIndex, inputRequestedRegionIndex;
  OutputOffsetType offsetIndex;

  typename TInputImage::SizeType inputRequestedRegionSize;
  typename TOutputImage::PointType tempPoint;

  // Use this index to compute the offset everywhere in this class
  outputIndex = outputPtr->GetLargestPossibleRegion().GetIndex();

  // We wish to perform the following mapping of outputIndex to
  // inputIndex on all points in our region
  outputPtr->TransformIndexToPhysicalPoint(outputIndex, tempPoint);
  inputPtr->TransformPhysicalPointToIndex(tempPoint, inputIndex);

  // Given that the size is scaled by a constant factor eq:
  // inputIndex = outputIndex * factorSize
  // is equivalent up to a fixed offset which we now compute
  OffsetValueType zeroOffset = 0;
  for ( i = 0; i < TInputImage::ImageDimension; i++ )
    {
    offsetIndex[i] = inputIndex[i] - outputIndex[i] * m_ShrinkFactors[i];
    // It is plausible that due to small amounts of loss of numerical
    // precision that the offset it negaive, this would cause sampling
    // out of out region, this is insurance against that possibility
    offsetIndex[i] = std::max(zeroOffset, offsetIndex[i]);
    }

  inputRequestedRegionIndex = outputRequestedRegionStartIndex * factorSize + offsetIndex;

  // originally this was
  // inputRequestedRegionSize = outputRequestedRegionSize * factorSize;
  // but since we don't sample edge to edge, we can reduce the size
  for ( i=0; i < TInputImage::ImageDimension; ++i )
    {
    inputRequestedRegionSize[i] = (outputRequestedRegionSize[i] - 1 ) * factorSize[i] + 1;
    }

  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion.SetIndex(inputRequestedRegionIndex);
  inputRequestedRegion.SetSize(inputRequestedRegionSize);
  inputRequestedRegion.Crop( inputPtr->GetLargestPossibleRegion() );

  inputPtr->SetRequestedRegion(inputRequestedRegion);
}

/**
 *
 */
template< typename TInputImage, typename TOutputImage >
void
ShrinkImageFilter< TInputImage, TOutputImage >
::GenerateOutputInformation()
{
  // Call the superclass' implementation of this method
  Superclass::GenerateOutputInformation();

  // Get pointers to the input and output
  const InputImageType * inputPtr = this->GetInput();
  OutputImageType * outputPtr = this->GetOutput();

  itkAssertInDebugAndIgnoreInReleaseMacro( inputPtr );
  itkAssertInDebugAndIgnoreInReleaseMacro( outputPtr != ITK_NULLPTR );

  // Compute the output spacing, the output image size, and the
  // output image start index
  unsigned int i;
  const typename TInputImage::SpacingType &
  inputSpacing = inputPtr->GetSpacing();
  const typename TInputImage::SizeType &   inputSize =
    inputPtr->GetLargestPossibleRegion().GetSize();
  const typename TInputImage::IndexType &  inputStartIndex =
    inputPtr->GetLargestPossibleRegion().GetIndex();

  typename TOutputImage::SpacingType outputSpacing;
  typename TOutputImage::SizeType outputSize;
  typename TOutputImage::IndexType outputStartIndex;

  for ( i = 0; i < TOutputImage::ImageDimension; i++ )
    {
    outputSpacing[i] = inputSpacing[i] * (double)m_ShrinkFactors[i];

    // Round down so that all output pixels fit input input region
    outputSize[i] = static_cast<SizeValueType>(
      std::floor( (double)inputSize[i] / (double)m_ShrinkFactors[i] ) );

    if ( outputSize[i] < 1 )
      {
      outputSize[i] = 1;
      }

    // Because of the later origin shift this starting index is not
    // critical
    outputStartIndex[i] = static_cast<IndexValueType>(
      std::ceil( (double)inputStartIndex[i] / (double)m_ShrinkFactors[i] ) );
    }

  outputPtr->SetSpacing(outputSpacing);

  // Compute origin offset
  // The physical center's of the input and output should be the same
  ContinuousIndex< SpacePrecisionType, TOutputImage::ImageDimension > inputCenterIndex;
  ContinuousIndex< SpacePrecisionType, TOutputImage::ImageDimension > outputCenterIndex;
  for ( i = 0; i < TOutputImage::ImageDimension; i++ )
    {
    inputCenterIndex[i] = inputStartIndex[i] + ( inputSize[i] - 1 ) / 2.0;
    outputCenterIndex[i] = outputStartIndex[i] + ( outputSize[i] - 1 ) / 2.0;
    }

  typename TOutputImage::PointType inputCenterPoint;
  typename TOutputImage::PointType outputCenterPoint;
  inputPtr->TransformContinuousIndexToPhysicalPoint(inputCenterIndex, inputCenterPoint);
  outputPtr->TransformContinuousIndexToPhysicalPoint(outputCenterIndex, outputCenterPoint);

  const typename TOutputImage::PointType & inputOrigin = inputPtr->GetOrigin();
  typename TOutputImage::PointType outputOrigin;
  outputOrigin = inputOrigin + (inputCenterPoint - outputCenterPoint);
  outputPtr->SetOrigin(outputOrigin);

  // Set region
  typename TOutputImage::RegionType outputLargestPossibleRegion;
  outputLargestPossibleRegion.SetSize(outputSize);
  outputLargestPossibleRegion.SetIndex(outputStartIndex);

  outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}
} // end namespace itk

#endif