1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/*=========================================================================
*
* Portions of this file are subject to the VTK Toolkit Version 3 copyright.
*
* Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
*
* For complete copyright, license and disclaimer of warranty information
* please refer to the NOTICE file at the top of the ITK source tree.
*
*=========================================================================*/
#ifndef itkSliceImageFilter_hxx
#define itkSliceImageFilter_hxx
#include "itkSliceImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkMath.h"
#include "itkContinuousIndex.h"
#include "itkObjectFactory.h"
#include "itkProgressReporter.h"
namespace itk
{
template< class TInputImage, class TOutputImage >
SliceImageFilter< TInputImage, TOutputImage >
::SliceImageFilter()
{
m_Start.Fill(NumericTraits<IndexValueType>::min());
m_Stop.Fill(NumericTraits<IndexValueType>::max());
m_Step.Fill(1);
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Start: " << m_Start << std::endl;
os << indent << "Stop: " << m_Stop << std::endl;
os << indent << "Step: " << m_Step << std::endl;
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::SetStart( typename TInputImage::IndexType::IndexValueType start)
{
unsigned int j;
for ( j = 0; j < ImageDimension; ++j )
{
if ( start != m_Start[j] )
{
this->Modified();
m_Start.Fill( start );
return;
}
}
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::SetStop(typename TInputImage::IndexType::IndexValueType stop)
{
unsigned int j;
for ( j = 0; j < ImageDimension; ++j )
{
if ( stop != m_Stop[j] )
{
this->Modified();
m_Stop.Fill( stop );
return;
}
}
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::SetStep(int step)
{
unsigned int j;
for ( j = 0; j < ImageDimension; ++j )
{
if ( step != m_Step[j] )
{
this->Modified();
m_Step.Fill( step );
return;
}
}
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputImageRegionType & outputRegionForThread,
ThreadIdType threadId)
{
// Get the input and output pointers
InputImageConstPointer inputPtr = this->GetInput();
OutputImagePointer outputPtr = this->GetOutput();
// Support progress methods/callbacks
ProgressReporter progress( this, threadId, outputRegionForThread.GetNumberOfPixels() );
const typename TInputImage::SizeType &inputSize = inputPtr->GetLargestPossibleRegion().GetSize();
const typename TInputImage::IndexType &inputIndex = inputPtr->GetLargestPossibleRegion().GetIndex();
// clamp start
InputIndexType start;
for ( unsigned int i = 0; i < TOutputImage::ImageDimension; ++i )
{
start[i] = std::max( m_Start[i], inputIndex[i] );
start[i] = std::min( start[i], static_cast<IndexValueType>(inputIndex[i] + inputSize[i]-1) );
}
// Define/declare an iterator that will walk the output region for this
// thread.
typedef ImageRegionIteratorWithIndex< TOutputImage > OutputIterator;
OutputIterator outIt(outputPtr, outputRegionForThread);
OutputIndexType destIndex;
InputIndexType srcIndex;
while ( !outIt.IsAtEnd() )
{
// Determine the index and physical location of the output pixel
destIndex = outIt.GetIndex();
for( unsigned int i = 0; i < TOutputImage::ImageDimension; ++i )
{
srcIndex[i] = destIndex[i]*m_Step[i] + start[i];
}
// Copy the input pixel to the output
outIt.Set( inputPtr->GetPixel(srcIndex) );
++outIt;
progress.CompletedPixel();
}
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
// Get pointers to the input and output
InputImagePointer inputPtr = const_cast< TInputImage * >( this->GetInput() );
OutputImagePointer outputPtr = this->GetOutput();
const typename TOutputImage::SizeType & outputRequestedRegionSize = outputPtr->GetRequestedRegion().GetSize();
const typename TOutputImage::IndexType & outputRequestedRegionStartIndex = outputPtr->GetRequestedRegion().GetIndex();
const typename TInputImage::SizeType &inputSize = inputPtr->GetLargestPossibleRegion().GetSize();
const typename TInputImage::IndexType &inputIndex = inputPtr->GetLargestPossibleRegion().GetIndex();
// clamp start
InputIndexType start;
for ( unsigned int i = 0; i < TOutputImage::ImageDimension; ++i )
{
// clamp to valid index range and don't include one past end, so
// that a zero size RR would be valid
start[i] = std::max( m_Start[i], inputIndex[i] );
start[i] = std::min( start[i], static_cast<IndexValueType>(inputIndex[i] + inputSize[i] -1) );
}
typename TInputImage::SizeType inputRequestedRegionSize;
inputRequestedRegionSize.Fill(0);
for ( unsigned int i=0; i < TInputImage::ImageDimension; ++i )
{
if ( outputRequestedRegionSize[i] > 0 )
{
inputRequestedRegionSize[i] = (outputRequestedRegionSize[i] - 1 ) * itk::Math::abs(m_Step[i]) + 1;
}
}
InputIndexType inputRequestedRegionIndex;
for ( unsigned int i=0; i < TOutputImage::ImageDimension; ++i )
{
inputRequestedRegionIndex[i] = outputRequestedRegionStartIndex[i] * m_Step[i] + start[i];
// if reversing, go to the lower ending index - 1
if (m_Step[i] < 0)
{
inputRequestedRegionIndex[i] -= inputRequestedRegionSize[i] - 1;
}
}
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion.SetIndex(inputRequestedRegionIndex);
inputRequestedRegion.SetSize(inputRequestedRegionSize);
// test if input RR is completely inside input largest region
if ( inputRequestedRegion.GetNumberOfPixels() > 0 &&
!inputPtr->GetLargestPossibleRegion().IsInside( inputRequestedRegion ) )
{
itkExceptionMacro( "Logic Error: incorrect computation of RequestedRegion" );
}
inputPtr->SetRequestedRegion(inputRequestedRegion);
return;
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::GenerateOutputInformation()
{
// Call the superclass' implementation of this method
Superclass::GenerateOutputInformation();
// Get pointers to the input and output
InputImageConstPointer inputPtr = this->GetInput();
OutputImagePointer outputPtr = this->GetOutput();
// Compute the output spacing, the output image size, and the
// output image start index
const typename TInputImage::SpacingType &inputSpacing = inputPtr->GetSpacing();
const typename TInputImage::SizeType &inputSize = inputPtr->GetLargestPossibleRegion().GetSize();
const typename TInputImage::IndexType &inputIndex = inputPtr->GetLargestPossibleRegion().GetIndex();
typename TInputImage::IndexType inputStartIndex;
typename TOutputImage::SpacingType outputSpacing;
typename TOutputImage::SizeType outputSize;
typename TOutputImage::IndexType outputStartIndex;
outputStartIndex.Fill(0);
for ( unsigned int i = 0; i < TOutputImage::ImageDimension; ++i )
{
outputSpacing[i] = inputSpacing[i] * itk::Math::abs(m_Step[i]);
// clamp start
// Based on the sign of the step include 1 after the end.
IndexValueType start = std::max( m_Start[i], inputIndex[i] - int(m_Step[i]<0));
start = std::min( start, static_cast<IndexValueType>(inputIndex[i] + inputSize[i]) - int(m_Step[i]<0) );
// clamp stop
// Based on the sign of the step include 1 after the end.
IndexValueType stop = std::max( m_Stop[i], inputIndex[i] - int(m_Step[i]<0) );
stop = std::min( stop, static_cast<IndexValueType>(inputIndex[i] + inputSize[i]) - int(m_Step[i]<0));
// If both the numerator and the denominator have the same sign,
// then the range is a valid and non-zero sized. Truncation is the
// correct rounding for these positive values.
if ( (m_Step[i] > 0 && stop > start) ||
( m_Step[i] < 0 && stop < start ) )
{
outputSize[i] = (stop-start-Math::sgn(m_Step[i]))/m_Step[i];
outputSize[i] += 1u;
}
else
{
outputSize[i] = 0u;
}
// If the step is negative, then the start is still the index of
// the output origin
inputStartIndex[i] = start;
}
const typename TInputImage::DirectionType & inputDirection = inputPtr->GetDirection();
typename TInputImage::DirectionType flipMatrix;
// Need a matrix to model the reversing of directions, this should
// maintain the physical location of the pixels
for ( unsigned int j = 0; j < ImageDimension; ++j )
{
flipMatrix[j][j] = itk::Math::sgn0(m_Step[j]);
}
outputPtr->SetDirection(inputDirection * flipMatrix);
outputPtr->SetSpacing(outputSpacing);
typename TOutputImage::PointType outputOrigin;
inputPtr->TransformIndexToPhysicalPoint(inputStartIndex, outputOrigin);
outputPtr->SetOrigin(outputOrigin);
// Set region
typename TOutputImage::RegionType outputLargestPossibleRegion;
outputLargestPossibleRegion.SetSize(outputSize);
outputLargestPossibleRegion.SetIndex(outputStartIndex);
outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}
template< class TInputImage, class TOutputImage >
void
SliceImageFilter< TInputImage, TOutputImage >
::VerifyInputInformation()
{
Superclass::VerifyInputInformation();
for ( unsigned int i = 0; i < ImageDimension; ++i )
{
if ( m_Step[i] == 0 )
{
itkExceptionMacro( "Step size is zero " << m_Step << "!" );
}
}
}
} // end namespace itk
#endif
|