File: itkWarpImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (485 lines) | stat: -rw-r--r-- 16,099 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWarpImageFilter_hxx
#define itkWarpImageFilter_hxx
#include "itkWarpImageFilter.h"

#include "itkImageRegionIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageAlgorithm.h"
#include "itkNumericTraits.h"
#include "itkDefaultConvertPixelTraits.h"
#include "itkProgressReporter.h"
#include "itkContinuousIndex.h"
#include "itkMath.h"
namespace itk
{
/**
 * Default constructor.
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::WarpImageFilter()
{
  // #0 implicit "Primary" input required
  // #1 "DisplacementField" required
  Self::AddRequiredInputName("DisplacementField", 1);


  // Setup default values
  m_OutputSpacing.Fill(1.0);
  m_OutputOrigin.Fill(0.0);
  m_OutputDirection.SetIdentity();
  m_OutputSize.Fill(0);
  m_EdgePaddingValue = NumericTraits< PixelType >::ZeroValue(m_EdgePaddingValue);
  m_OutputStartIndex.Fill(0);
  // Setup default interpolator
  typename DefaultInterpolatorType::Pointer interp =
    DefaultInterpolatorType::New();

  m_Interpolator =
    static_cast< InterpolatorType * >( interp.GetPointer() );

  m_DefFieldSameInformation = false;
}

/**
 * Standard PrintSelf method.
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "OutputSpacing: " << m_OutputSpacing << std::endl;
  os << indent << "OutputOrigin: " << m_OutputOrigin << std::endl;
  os << indent << "OutputDirection: " << m_OutputDirection << std::endl;
  os << indent << "OutputSize: " << m_OutputSize << std::endl;
  os << indent << "OutputStartIndex: " << m_OutputStartIndex << std::endl;
  os << indent << "EdgePaddingValue: "
     << static_cast< typename NumericTraits< PixelType >::PrintType >( m_EdgePaddingValue )
     << std::endl;
  os << indent << "Interpolator: " << m_Interpolator.GetPointer() << std::endl;
}

/**
 * Set the output image spacing.
 *
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::SetOutputSpacing(
  const double *spacing)
{
  SpacingType s;
  for(unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
    {
    s[i] = static_cast< typename SpacingType::ValueType >(spacing[i]);
    }
  this->SetOutputSpacing(s);
}

/**
 * Set the output image origin.
 *
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::SetOutputOrigin(
  const double *origin)
{
  PointType p(origin);

  this->SetOutputOrigin(p);
}

/** Helper method to set the output parameters based on this image */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::SetOutputParametersFromImage(const ImageBaseType *image)
{
  this->SetOutputOrigin ( image->GetOrigin() );
  this->SetOutputSpacing ( image->GetSpacing() );
  this->SetOutputDirection ( image->GetDirection() );
  this->SetOutputStartIndex ( image->GetLargestPossibleRegion().GetIndex() );
  this->SetOutputSize ( image->GetLargestPossibleRegion().GetSize() );
}

template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::VerifyInputInformation()
{
  if (ImageDimension != GetDisplacementField()->GetNumberOfComponentsPerPixel())
    {
    itkExceptionMacro("Expected number of components of displacement field to match image dimensions!");
    }
}

/**
 * Setup state of filter before multi-threading.
 * InterpolatorType::SetInputImage is not thread-safe and hence
 * has to be setup before ThreadedGenerateData
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::BeforeThreadedGenerateData()
{
  if ( !m_Interpolator )
    {
    itkExceptionMacro(<< "Interpolator not set");
    }
  const DisplacementFieldType *fieldPtr = this->GetDisplacementField();

  unsigned int numberOfComponents = DefaultConvertPixelTraits<PixelType>::GetNumberOfComponents(m_EdgePaddingValue);

  if( numberOfComponents != this->GetInput()->GetNumberOfComponentsPerPixel() )
    {
    PixelComponentType zeroComponent = NumericTraits<PixelComponentType>::ZeroValue(zeroComponent);
    numberOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
    NumericTraits<PixelType>::SetLength(m_EdgePaddingValue,numberOfComponents);

    for( unsigned int n = 0; n < numberOfComponents; ++n )
      {
      DefaultConvertPixelTraits<PixelType>::SetNthComponent(n,m_EdgePaddingValue,zeroComponent);
      }
    }

  if( NumericTraits<PixelType>::GetLength(m_EdgePaddingValue) != this->GetInput()->GetNumberOfComponentsPerPixel() )
    {
    // Assume EdgePaddingValue has not been set externally
    // initialize it here with ZeroValue, when we know the number of components
    const PixelType& pixel = this->GetInput()->GetPixel( this->GetInput()->GetBufferedRegion().GetIndex() );
    m_EdgePaddingValue = NumericTraits<PixelType>::ZeroValue( pixel );
    }

  // Connect input image to interpolator
  m_Interpolator->SetInputImage( this->GetInput() );

  if ( !m_DefFieldSameInformation )
    {
    m_StartIndex = fieldPtr->GetBufferedRegion().GetIndex();
    for ( unsigned i = 0; i < ImageDimension; i++ )
      {
      m_EndIndex[i] = m_StartIndex[i]
                      + fieldPtr->GetBufferedRegion().GetSize()[i] - 1;
      }
    }
}

/**
 * Setup state of filter after multi-threading.
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::AfterThreadedGenerateData()
{
  // Disconnect input image from interpolator
  m_Interpolator->SetInputImage(ITK_NULLPTR);
}

template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::EvaluateDisplacementAtPhysicalPoint(const PointType & point, DisplacementType & output)
{
    this->EvaluateDisplacementAtPhysicalPoint(point, this->GetDisplacementField(), output);
}

template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::EvaluateDisplacementAtPhysicalPoint(
  const PointType & point,
  const DisplacementFieldType * fieldPtr,
  DisplacementType & output)
{
  ContinuousIndex< double, ImageDimension > index;
  fieldPtr->TransformPhysicalPointToContinuousIndex(point, index);
  unsigned int dim;  // index over dimension
  /**
   * Compute base index = closest index below point
   * Compute distance from point to base index
   */
  IndexType baseIndex;
  IndexType neighIndex;
  double    distance[ImageDimension];

  for ( dim = 0; dim < ImageDimension; dim++ )
    {
    baseIndex[dim] = Math::Floor< IndexValueType >(index[dim]);

    if ( baseIndex[dim] >=  m_StartIndex[dim] )
      {
      if ( baseIndex[dim] <  m_EndIndex[dim] )
        {
        distance[dim] = index[dim] - static_cast< double >( baseIndex[dim] );
        }
      else
        {
        baseIndex[dim] = m_EndIndex[dim];
        distance[dim] = 0.0;
        }
      }
    else
      {
      baseIndex[dim] = m_StartIndex[dim];
      distance[dim] = 0.0;
      }
    }

  /**
   * Interpolated value is the weight some of each of the surrounding
   * neighbors. The weight for each neighbour is the fraction overlap
   * of the neighbor pixel with respect to a pixel centered on point.
   */
  output.Fill(0);

  double       totalOverlap = 0.0;
  unsigned int numNeighbors(1 << TInputImage::ImageDimension);

  for ( unsigned int counter = 0; counter < numNeighbors; counter++ )
    {
    double       overlap = 1.0;    // fraction overlap
    unsigned int upper = counter;  // each bit indicates upper/lower neighbour

    // get neighbor index and overlap fraction
    for ( dim = 0; dim < ImageDimension; dim++ )
      {
      if ( upper & 1 )
        {
        neighIndex[dim] = baseIndex[dim] + 1;
        overlap *= distance[dim];
        }
      else
        {
        neighIndex[dim] = baseIndex[dim];
        overlap *= 1.0 - distance[dim];
        }

      upper >>= 1;
      }

    // get neighbor value only if overlap is not zero
    if ( overlap )
      {
      const DisplacementType input = fieldPtr->GetPixel(neighIndex);
      const unsigned int displacementComponent = NumericTraits<DisplacementType>::GetLength(input);
      for ( unsigned int k = 0; k < displacementComponent; ++k )
        {
        output[k] += overlap * static_cast< double >( input[k] );
        }
      totalOverlap += overlap;
      }

    if ( totalOverlap == 1.0 )
      {
      // finished
      break;
      }
    }
}

/**
 * Compute the output for the region specified by outputRegionForThread.
 */
template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::ThreadedGenerateData(
  const OutputImageRegionType & outputRegionForThread,
  ThreadIdType threadId)
{
  OutputImageType             *outputPtr = this->GetOutput();
  const DisplacementFieldType *fieldPtr = this->GetDisplacementField();

  // support progress methods/callbacks
  ProgressReporter progress( this, threadId, outputRegionForThread.GetNumberOfPixels() );

  // iterator for the output image
  ImageRegionIteratorWithIndex< OutputImageType > outputIt(
    outputPtr, outputRegionForThread);
  IndexType        index;
  PointType        point;
  DisplacementType displacement;
  NumericTraits<DisplacementType>::SetLength(displacement,ImageDimension);
  if ( this->m_DefFieldSameInformation )
    {
    // iterator for the deformation field
    ImageRegionConstIterator< DisplacementFieldType >
    fieldIt(fieldPtr, outputRegionForThread);

    while ( !outputIt.IsAtEnd() )
      {
      // get the output image index
      index = outputIt.GetIndex();
      outputPtr->TransformIndexToPhysicalPoint(index, point);

      // get the required displacement
      displacement = fieldIt.Get();

      // compute the required input image point
      for ( unsigned int j = 0; j < ImageDimension; j++ )
        {
        point[j] += displacement[j];
        }

      // get the interpolated value
      if ( m_Interpolator->IsInsideBuffer(point) )
        {
        PixelType value =
          static_cast< PixelType >( m_Interpolator->Evaluate(point) );
        outputIt.Set(value);
        }
      else
        {
        outputIt.Set(m_EdgePaddingValue);
        }
      ++outputIt;
      ++fieldIt;
      progress.CompletedPixel();
      }
    }
  else
    {
    while ( !outputIt.IsAtEnd() )
      {
      // get the output image index
      index = outputIt.GetIndex();
      outputPtr->TransformIndexToPhysicalPoint(index, point);

      this->EvaluateDisplacementAtPhysicalPoint(point, fieldPtr, displacement);
      // compute the required input image point
      for ( unsigned int j = 0; j < ImageDimension; j++ )
        {
        point[j] += displacement[j];
        }

      // get the interpolated value
      if ( m_Interpolator->IsInsideBuffer(point) )
        {
        PixelType value =
          static_cast< PixelType >( m_Interpolator->Evaluate(point) );
        outputIt.Set(value);
        }
      else
        {
        outputIt.Set(m_EdgePaddingValue);
        }
      ++outputIt;
      progress.CompletedPixel();
      }
    }
}

template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::GenerateInputRequestedRegion()
{
  // call the superclass's implementation
  Superclass::GenerateInputRequestedRegion();

  // request the largest possible region for the input image
  InputImageType * inputPtr =
    const_cast< InputImageType * >( this->GetInput() );

  if ( inputPtr )
    {
    inputPtr->SetRequestedRegionToLargestPossibleRegion();
    }

  // If the output and the deformation field have the same
  // information, just propagate up the output requested region for the
  // deformation field. Otherwise, it is non-trivial to determine
  // the smallest region of the deformation field that fully
  // contains the physical space covered by the output's requested
  // region, se we do the easy thing and request the largest possible region
  DisplacementFieldType *fieldPtr =
    const_cast<DisplacementFieldType *>(this->GetDisplacementField());
  const OutputImageType *outputPtr = this->GetOutput();
  if ( fieldPtr != ITK_NULLPTR )
    {
    // tolerance for origin and spacing depends on the size of pixel
    // tolerance for direction is a fraction of the unit cube.
    const SpacePrecisionType coordinateTol = this->GetCoordinateTolerance() * outputPtr->GetSpacing()[0]; // use first dimension spacing

    this->m_DefFieldSameInformation =
       (outputPtr->GetOrigin().GetVnlVector().is_equal(fieldPtr->GetOrigin().GetVnlVector(), coordinateTol))
    && (outputPtr->GetSpacing().GetVnlVector().is_equal(fieldPtr->GetSpacing().GetVnlVector(), coordinateTol))
    && (outputPtr->GetDirection().GetVnlMatrix().as_ref().is_equal(fieldPtr->GetDirection().GetVnlMatrix(), this->GetDirectionTolerance()));

    if (this->m_DefFieldSameInformation)
      {
      fieldPtr->SetRequestedRegion( outputPtr->GetRequestedRegion() );
      }
    else
      {
      typedef typename TDisplacementField::RegionType DisplacementRegionType;

      DisplacementRegionType fieldRequestedRegion = ImageAlgorithm::EnlargeRegionOverBox(outputPtr->GetRequestedRegion(),
                                                                                         outputPtr,
                                                                                         fieldPtr);
      fieldPtr->SetRequestedRegion( fieldRequestedRegion );
      }
    if ( !fieldPtr->VerifyRequestedRegion() )
      {
      fieldPtr->SetRequestedRegion( fieldPtr->GetLargestPossibleRegion() );
      }
    }
}

template< typename TInputImage, typename TOutputImage, typename TDisplacementField >
void
WarpImageFilter< TInputImage, TOutputImage, TDisplacementField >
::GenerateOutputInformation()
{
  // call the superclass's implementation of this method
  Superclass::GenerateOutputInformation();

  OutputImageType * outputPtr = this->GetOutput();

  outputPtr->SetSpacing(m_OutputSpacing);
  outputPtr->SetOrigin(m_OutputOrigin);
  outputPtr->SetDirection(m_OutputDirection);

  const DisplacementFieldType* fieldPtr = this->GetDisplacementField();
  if ( this->m_OutputSize[0] == 0
       && fieldPtr != ITK_NULLPTR )
    {
    outputPtr->SetLargestPossibleRegion( fieldPtr->
                                         GetLargestPossibleRegion() );
    }
  else
    {
    OutputImageRegionType region;
    region.SetSize(this->m_OutputSize);
    region.SetIndex(this->m_OutputStartIndex);
    outputPtr->SetLargestPossibleRegion(region);
    }
}
} // end namespace itk

#endif