1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkAffineTransform.h"
#include "itkResampleImageFilter.h"
#include "itkTimeProbe.h"
#include "itkTestingMacros.h"
int itkResampleImageTest4(int argc, char * argv [] )
{
const unsigned int NDimensions = 2;
typedef float PixelType;
typedef itk::Image<PixelType, NDimensions> ImageType;
typedef ImageType::IndexType ImageIndexType;
typedef ImageType::Pointer ImagePointerType;
typedef ImageType::RegionType ImageRegionType;
typedef ImageType::SizeType ImageSizeType;
typedef double CoordRepType;
typedef itk::AffineTransform<CoordRepType,NDimensions> AffineTransformType;
typedef itk::LinearInterpolateImageFunction<ImageType,CoordRepType> InterpolatorType;
float scaling = 10.0;
if (argc > 1)
{
scaling = atof( argv[1] );
}
// Create and configure an image
ImagePointerType image = ImageType::New();
ImageIndexType index = {{0, 0}};
ImageSizeType size = {{64,64}};
ImageRegionType region;
region.SetSize ( size );
region.SetIndex( index );
image->SetLargestPossibleRegion( region );
image->SetBufferedRegion( region );
image->Allocate();
unsigned int newDims = static_cast<unsigned int>( 64*scaling );
ImageSizeType osize = {{newDims, newDims}};
ImageType::SpacingType spacing;
spacing[0] = size[0] / static_cast<double>(osize[0]);
spacing[1] = size[1] / static_cast<double>(osize[1]);
// Fill image with a ramp
itk::ImageRegionIteratorWithIndex<ImageType> iter(image, region);
PixelType value;
for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
{
index = iter.GetIndex();
value = index[0] + index[1];
iter.Set(value);
}
// Create an affine transformation
AffineTransformType::Pointer aff = AffineTransformType::New();
aff->Scale(0.9);
// Create a linear interpolation image function
InterpolatorType::Pointer interp = InterpolatorType::New();
interp->SetInputImage(image);
// Create and configure a resampling filter
itk::ResampleImageFilter< ImageType, ImageType >::Pointer resample =
itk::ResampleImageFilter< ImageType, ImageType >::New();
EXERCISE_BASIC_OBJECT_METHODS( resample, ResampleImageFilter, ImageToImageFilter );
resample->SetInterpolator(interp);
resample->SetInput(image);
TEST_SET_GET_VALUE( image, resample->GetInput() );
resample->SetSize(osize);
TEST_SET_GET_VALUE( osize, resample->GetSize() );
resample->SetTransform(aff);
TEST_SET_GET_VALUE( aff, resample->GetTransform() );
resample->SetInterpolator(interp);
TEST_SET_GET_VALUE( interp, resample->GetInterpolator() );
index.Fill( 0 );
resample->SetOutputStartIndex( index );
TEST_SET_GET_VALUE( index, resample->GetOutputStartIndex() );
ImageType::PointType origin;
origin.Fill( 0.0 );
resample->SetOutputOrigin( origin );
TEST_SET_GET_VALUE( origin, resample->GetOutputOrigin() );
resample->SetOutputSpacing( spacing );
TEST_SET_GET_VALUE( spacing, resample->GetOutputSpacing() );
// Run the resampling filter
itk::TimeProbe clock;
clock.Start();
resample->Update();
clock.Stop();
std::cout << "Resampling from " << size << " to " << osize << " took " << clock.GetMean() << " s" << std::endl;
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|