1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMath.h"
#include "itkSigmoidImageFilter.h"
#include "itkTestingMacros.h"
int itkSigmoidImageFilterTest( int, char* [] )
{
// Define the dimension of the images
const unsigned int ImageDimension = 3;
// Declare the types of the images
typedef float InputPixelType;
typedef float OutputPixelType;
typedef itk::Image< InputPixelType, ImageDimension > InputImageType;
typedef itk::Image< OutputPixelType, ImageDimension > OutputImageType;
// Declare appropriate Iterator types for each image
typedef itk::ImageRegionIteratorWithIndex<
InputImageType> InputIteratorType;
typedef itk::ImageRegionIteratorWithIndex<
OutputImageType> OutputIteratorType;
// Declare the type of the index to access images
typedef itk::Index< ImageDimension > IndexType;
// Declare the type of the size
typedef itk::Size< ImageDimension > SizeType;
// Declare the type of the Region
typedef itk::ImageRegion< ImageDimension > RegionType;
// Create the input images
InputImageType::Pointer inputImage = InputImageType::New();
// Define their size, and start index
SizeType size;
size[0] = 2;
size[1] = 2;
size[2] = 2;
IndexType start;
start[0] = 0;
start[1] = 0;
start[2] = 0;
RegionType region;
region.SetIndex( start );
region.SetSize( size );
// Initialize the input image
inputImage->SetLargestPossibleRegion( region );
inputImage->SetBufferedRegion( region );
inputImage->SetRequestedRegion( region );
inputImage->Allocate();
// Create one iterator for the input image (this is a light object)
InputIteratorType it( inputImage, inputImage->GetBufferedRegion() );
// Initialize the content of the input image
const double value = 30;
it.GoToBegin();
while( !it.IsAtEnd() )
{
it.Set( value );
++it;
}
// Declare the type for the Sigmoid filter
typedef itk::SigmoidImageFilter< InputImageType,
OutputImageType > FilterType;
// Create the filter
FilterType::Pointer filter = FilterType::New();
EXERCISE_BASIC_OBJECT_METHODS( filter, SigmoidImageFilter,
UnaryFunctorImageFilter );
// Set the input image
filter->SetInput( inputImage );
// Set the filter parameters
const double alpha = 2.0;
const double beta = 3.0;
filter->SetAlpha( alpha );
TEST_SET_GET_VALUE( alpha, filter->GetAlpha() );
filter->SetBeta( beta );
TEST_SET_GET_VALUE( beta, filter->GetBeta() );
const OutputPixelType maximum = 1.0;
const OutputPixelType minimum = -1.0;
filter->SetOutputMinimum( minimum );
TEST_SET_GET_VALUE( minimum, filter->GetOutputMinimum() );
filter->SetOutputMaximum( maximum );
TEST_SET_GET_VALUE( maximum, filter->GetOutputMaximum() );
filter->SetFunctor( filter->GetFunctor() );
// Execute the filter
filter->Update();
// Get the filter output
OutputImageType::Pointer outputImage = filter->GetOutput();
// Create an iterator for going through the image output
OutputIteratorType ot( outputImage, outputImage->GetRequestedRegion() );
// Check the content of the result image
const OutputImageType::PixelType epsilon = 1e-6;
ot.GoToBegin();
it.GoToBegin();
while( !ot.IsAtEnd() )
{
const InputImageType::PixelType input = it.Get();
const OutputImageType::PixelType output = ot.Get();
const double x1 = ( input - beta ) / alpha;
const double x2 = ( maximum - minimum )*( 1.0 / ( 1.0 + std::exp( -x1 ) ) ) + minimum;
const OutputImageType::PixelType sigmoid =
static_cast<OutputImageType::PixelType>( x2 );
if( !itk::Math::FloatAlmostEqual( sigmoid, output, 10, epsilon ) )
{
std::cerr.precision( static_cast< int >( itk::Math::abs( std::log10( epsilon ) ) ) );
std::cerr << "Error " << std::endl;
std::cerr << " simoid( " << input << ") = " << sigmoid << std::endl;
std::cerr << " differs from " << output;
std::cerr << " by more than " << epsilon << std::endl;
return EXIT_FAILURE;
}
++ot;
++it;
}
return EXIT_SUCCESS;
}
|