1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkTernaryMagnitudeSquaredImageFilter.h"
#include "itkTestingMacros.h"
int itkTernaryMagnitudeSquaredImageFilterTest( int, char* [] )
{
// Define the dimension of the images
const unsigned int Dimension = 3;
// Declare the pixel types of the images
typedef float PixelType;
// Declare the types of the images
typedef itk::Image< PixelType, Dimension> InputImageType1;
typedef itk::Image< PixelType, Dimension> InputImageType2;
typedef itk::Image< PixelType, Dimension> InputImageType3;
typedef itk::Image< PixelType, Dimension> OutputImageType;
// Declare the type of the index to access images
typedef itk::Index< Dimension > IndexType;
// Declare the type of the size
typedef itk::Size< Dimension > SizeType;
// Declare the type of the Region
typedef itk::ImageRegion< Dimension > RegionType;
// Create the input images
InputImageType1::Pointer inputImageA = InputImageType1::New();
InputImageType2::Pointer inputImageB = InputImageType2::New();
InputImageType3::Pointer inputImageC = InputImageType3::New();
// Define their size, and start index
SizeType size;
size[0] = 2;
size[1] = 2;
size[2] = 2;
IndexType start;
start[0] = 0;
start[1] = 0;
start[2] = 0;
RegionType region;
region.SetIndex( start );
region.SetSize( size );
// Initialize Image A
inputImageA->SetLargestPossibleRegion( region );
inputImageA->SetBufferedRegion( region );
inputImageA->SetRequestedRegion( region );
inputImageA->Allocate();
// Initialize Image B
inputImageB->SetLargestPossibleRegion( region );
inputImageB->SetBufferedRegion( region );
inputImageB->SetRequestedRegion( region );
inputImageB->Allocate();
// Initialize Image C
inputImageC->SetLargestPossibleRegion( region );
inputImageC->SetBufferedRegion( region );
inputImageC->SetRequestedRegion( region );
inputImageC->Allocate();
// Declare appropriate Iterator types for each image
typedef itk::ImageRegionIteratorWithIndex< InputImageType1 >
InputImage1IteratorType;
typedef itk::ImageRegionIteratorWithIndex< InputImageType2 >
InputImage2IteratorType;
typedef itk::ImageRegionIteratorWithIndex< InputImageType3 >
InputImage3IteratorType;
typedef itk::ImageRegionIteratorWithIndex< OutputImageType >
OutputImageIteratorType;
// Create one iterator for Image A (this is a light object)
InputImage1IteratorType it1( inputImageA, inputImageA->GetBufferedRegion() );
// Initialize the content of Image A
const InputImageType1::PixelType valueA = 2.0;
while( !it1.IsAtEnd() )
{
it1.Set( valueA );
++it1;
}
// Create one iterator for Image B (this is a light object)
InputImage2IteratorType it2( inputImageB, inputImageB->GetBufferedRegion() );
// Initialize the content of Image B
const InputImageType2::PixelType valueB = 3.0;
while( !it2.IsAtEnd() )
{
it2.Set( valueB );
++it2;
}
// Create one iterator for Image C (this is a light object)
InputImage3IteratorType it3( inputImageC, inputImageC->GetBufferedRegion() );
// Initialize the content of Image C
const InputImageType3::PixelType valueC = 4.0;
while( !it3.IsAtEnd() )
{
it3.Set( valueC );
++it3;
}
// Declare the type for the TernaryMagnitudeSquaredImageFilter
typedef itk::TernaryMagnitudeSquaredImageFilter<
InputImageType1,
InputImageType2,
InputImageType3,
OutputImageType > FilterType;
// Create the filter
FilterType::Pointer filter = FilterType::New();
EXERCISE_BASIC_OBJECT_METHODS( filter, TernaryMagnitudeSquaredImageFilter,
TernaryFunctorImageFilter );
// Set the input images
filter->SetInput1( inputImageA );
filter->SetInput2( inputImageB );
filter->SetInput3( inputImageC );
filter->SetFunctor( filter->GetFunctor() );
// Execute the filter
filter->Update();
// Get the filter output
OutputImageType::Pointer outputImage = filter->GetOutput();
// Create an iterator for going through the image output
OutputImageIteratorType oIt( outputImage, outputImage->GetBufferedRegion() );
// Check the content of the result image
const float epsilon = 1e-6;
oIt.GoToBegin();
it1.GoToBegin();
it2.GoToBegin();
it3.GoToBegin();
while( !oIt.IsAtEnd() )
{
PixelType outputValue = static_cast< OutputImageType::PixelType >(
it1.Get() * it1.Get() + it2.Get() * it2.Get() + it3.Get() * it3.Get() );
if( !itk::Math::FloatAlmostEqual( oIt.Get(), outputValue, 10, epsilon ) )
{
std::cerr.precision( static_cast< int >( itk::Math::abs( std::log10( epsilon ) ) ) );
std::cerr << "Error " << std::endl;
std::cerr << "Value should be " << outputValue << std::endl;
std::cerr << "but is " << oIt.Get() << std::endl;
return EXIT_FAILURE;
}
++oIt;
++it1;
++it2;
++it3;
}
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|