File: itkLabelContourImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (487 lines) | stat: -rw-r--r-- 16,050 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLabelContourImageFilter_hxx
#define itkLabelContourImageFilter_hxx

#include "itkLabelContourImageFilter.h"

// don't think we need the indexed version as we only compute the
// index at the start of each run, but there isn't a choice
#include "itkImageLinearIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkConnectedComponentAlgorithm.h"
#include "itkProgressReporter.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
LabelContourImageFilter< TInputImage, TOutputImage >
::LabelContourImageFilter() :
  m_BackgroundValue( NumericTraits< OutputImagePixelType >::ZeroValue() ),
  m_NumberOfThreads( 0 ),
  m_FullyConnected( false )
{
  this->SetInPlace(false);
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need all the input.
  InputImagePointer input = const_cast< InputImageType * >( this->GetInput() );

  if ( !input )
    {
    return;
    }
  input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()
  ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::BeforeThreadedGenerateData()
{
  ThreadIdType nbOfThreads = this->GetNumberOfThreads();
  ThreadIdType global_nb_threads = itk::MultiThreader::GetGlobalMaximumNumberOfThreads();

  if ( global_nb_threads != 0 )
    {
    nbOfThreads = std::min( nbOfThreads, global_nb_threads );
    }

  // number of threads can be constrained by the region size, so call the
  // SplitRequestedRegion
  // to get the real number of threads which will be used
  OutputRegionType splitRegion;

  // dummy region - just to call
  // the following method
  nbOfThreads = this->SplitRequestedRegion(0, nbOfThreads, splitRegion);

  m_Barrier = Barrier::New();
  m_Barrier->Initialize(nbOfThreads);

  OutputImageType* output = this->GetOutput();

  SizeValueType pixelcount = output->GetRequestedRegion().GetNumberOfPixels();
  SizeValueType xsize = output->GetRequestedRegion().GetSize()[0];
  SizeValueType linecount = pixelcount / xsize;

  m_LineMap.clear();
  m_LineMap.resize(linecount);
  m_NumberOfThreads = nbOfThreads;
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const OutputRegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  OutputImageType   *output = this->GetOutput();
  const InputImageType *input = this->GetInput();

  // create a line iterator
  typedef itk::ImageLinearConstIteratorWithIndex< InputImageType >
  InputLineIteratorType;
  InputLineIteratorType inLineIt(input, outputRegionForThread);
  inLineIt.SetDirection(0);

  typedef itk::ImageLinearIteratorWithIndex< OutputImageType >
  OutputLineIteratorType;
  OutputLineIteratorType outLineIt(output, outputRegionForThread);
  outLineIt.SetDirection(0);

  // set the progress reporter to deal with the number of lines
  SizeValueType    pixelcountForThread = outputRegionForThread.GetNumberOfPixels();
  SizeValueType    xsizeForThread = outputRegionForThread.GetSize()[0];
  SizeValueType    linecountForThread = pixelcountForThread / xsizeForThread;
  ProgressReporter progress(this, threadId, linecountForThread * 2);

  // find the split axis
  OutputIndexType outputRegionIdx = output->GetRequestedRegion().GetIndex();
  OutputIndexType outputRegionForThreadIdx = outputRegionForThread.GetIndex();
  int       splitAxis = 0;
  for ( unsigned int i = 0; i < ImageDimension; i++ )
    {
    if ( outputRegionIdx[i] != outputRegionForThreadIdx[i] )
      {
      splitAxis = i;
      }
    }

  // compute the number of pixels before that thread
  OutputSizeType outputRegionSize = output->GetRequestedRegion().GetSize();
  outputRegionSize[splitAxis] = outputRegionForThreadIdx[splitAxis] - outputRegionIdx[splitAxis];
  SizeValueType firstLineIdForThread =
    OutputRegionType(outputRegionIdx, outputRegionSize).GetNumberOfPixels() / xsizeForThread;
  SizeValueType lineId = firstLineIdForThread;

  OffsetVectorType LineOffsets;
  SetupLineOffsets(LineOffsets);

  outLineIt.GoToBegin();
  for ( inLineIt.GoToBegin();
        !inLineIt.IsAtEnd();
        inLineIt.NextLine(), outLineIt.NextLine() )
    {
    inLineIt.GoToBeginOfLine();
    outLineIt.GoToBeginOfLine();
    LineEncodingType Line;
    while ( !inLineIt.IsAtEndOfLine() )
      {
      InputPixelType PVal = inLineIt.Get();

      SizeValueType  length = 0;
      InputIndexType thisIndex = inLineIt.GetIndex();
      outLineIt.Set(m_BackgroundValue);
      ++length;
      ++inLineIt;
      ++outLineIt;
      while ( !inLineIt.IsAtEndOfLine()
              && inLineIt.Get() == PVal )
        {
        outLineIt.Set(m_BackgroundValue);
        ++length;
        ++inLineIt;
        ++outLineIt;
        }
      // create the run length object to go in the vector
      RunLength     thisRun = { length, thisIndex, PVal };

      Line.push_back(thisRun);
      }
    m_LineMap[lineId] = Line;
    ++lineId;
    progress.CompletedPixel();
    }

  // wait for the other threads to complete that part
  this->Wait();

  // now process the map and make appropriate entries in an equivalence
  // table
  // itkAssertInDebugAndIgnoreInReleaseMacro( linecount == m_ForegroundLineMap.size() );
  SizeValueType   pixelcount = output->GetRequestedRegion().GetNumberOfPixels();
  SizeValueType   xsize = output->GetRequestedRegion().GetSize()[0];
  OffsetValueType linecount = pixelcount / xsize;

  SizeValueType lastLineIdForThread =  linecount;
  if ( threadId != m_NumberOfThreads - 1 )
    {
    lastLineIdForThread = firstLineIdForThread
                          + OutputRegionType( outputRegionIdx,
                                              outputRegionForThread.GetSize() ).GetNumberOfPixels() / xsizeForThread;
    }

  for ( SizeValueType ThisIdx = firstLineIdForThread; ThisIdx < lastLineIdForThread; ++ThisIdx )
    {
    if ( !m_LineMap[ThisIdx].empty() )
      {
      for ( OffsetVectorConstIterator I = LineOffsets.begin();
            I != LineOffsets.end();
            ++I )
        {
        OffsetValueType NeighIdx = ThisIdx + ( *I );

        // check if the neighbor is in the map
        if ( NeighIdx >= 0 && NeighIdx < linecount )
          {
          if( !m_LineMap[NeighIdx].empty() )
            {
            // Now check whether they are really neighbors
            bool areNeighbors =
              CheckNeighbors( m_LineMap[ThisIdx][0].where,
                              m_LineMap[NeighIdx][0].where );
            if ( areNeighbors )
              {
              // Compare the two lines
              CompareLines( output,
                            m_LineMap[ThisIdx],
                            m_LineMap[NeighIdx] );
              }
            }
          }
        }
      }
    progress.CompletedPixel();
    }
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::AfterThreadedGenerateData()
{
  m_LineMap.clear();
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::SetupLineOffsets(OffsetVectorType & LineOffsets)
{
  // Create a neighborhood so that we can generate a table of offsets
  // to "previous" line indexes
  // We are going to mis-use the neighborhood iterators to compute the
  // offset for us. All this messing around produces an array of
  // offsets that will be used to index the map
  OutputImageType* output = this->GetOutput();

  const unsigned int PretendDimension = ImageDimension - 1;

  typedef Image< OffsetValueType, PretendDimension >      PretendImageType;
  typedef typename PretendImageType::Pointer              PretendImagePointer;
  typedef typename PretendImageType::RegionType           PretendRegionType;
  typedef typename PretendRegionType::SizeType            PretendSizeType;
  typedef typename PretendRegionType::IndexType           PretendIndexType;

  PretendImagePointer fakeImage = PretendImageType::New();

  OutputSizeType OutSize = output->GetRequestedRegion().GetSize();

  PretendSizeType PretendSize;
  // The first dimension has been collapsed
  for ( unsigned int i = 0; i < PretendDimension; i++ )
    {
    PretendSize[i] = OutSize[i + 1];
    }

  PretendRegionType LineRegion;
  LineRegion.SetSize(PretendSize);

  fakeImage->SetRegions(LineRegion);

  PretendSizeType kernelRadius;
  kernelRadius.Fill(1);

  typedef ConstShapedNeighborhoodIterator< PretendImageType > LineNeighborhoodType;

  LineNeighborhoodType lnit(kernelRadius, fakeImage, LineRegion);

  setConnectivity(&lnit, m_FullyConnected);

  typedef typename LineNeighborhoodType::IndexListType  LineNeighborhoodIndexListType;
  LineNeighborhoodIndexListType ActiveIndexes = lnit.GetActiveIndexList();

  PretendIndexType idx = LineRegion.GetIndex();
  OffsetValueType  offset = fakeImage->ComputeOffset(idx);

  const typename LineNeighborhoodIndexListType::const_iterator LEnd = ActiveIndexes.end();
  for (typename LineNeighborhoodIndexListType::const_iterator LI = ActiveIndexes.begin();
    LI != LEnd; ++LI )
    {
    LineOffsets.push_back(fakeImage->ComputeOffset( idx + lnit.GetOffset(*LI) ) - offset);
    }

  LineOffsets.push_back(0);
  // LineOffsets is the thing we wanted.
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
bool
LabelContourImageFilter< TInputImage, TOutputImage >
::CheckNeighbors(const OutputIndexType & A,
                 const OutputIndexType & B) const
{
  // this checks whether the line encodings are really neighbors. The
  // first dimension gets ignored because the encodings are along that
  // axis
  OutputOffsetType Off = A - B;

  for ( unsigned int i = 1; i < ImageDimension; i++ )
    {
    if ( itk::Math::abs(Off[i]) > 1 )
      {
      return ( false );
      }
    }
  return ( true );
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::CompareLines(TOutputImage *output, LineEncodingType & current, const LineEncodingType & Neighbour)
{
  bool             sameLine = true;
  OutputOffsetType Off = current[0].where - Neighbour[0].where;

  for ( unsigned int i = 1; i < ImageDimension; i++ )
    {
    if ( Off[i] != 0 )
      {
      sameLine = false;
      break;
      }
    }

  OffsetValueType offset = 0;
  if ( m_FullyConnected || sameLine )
    {
    offset = 1;
    }

  LineEncodingIterator cIt = current.begin();
  LineEncodingIterator cEnd = current.end();

  // out marker iterator

  while ( cIt != cEnd )
    {
    if ( cIt->label != m_BackgroundValue )
      {
      //runLength cL = *cIt;
      OffsetValueType cStart = cIt->where[0];  // the start x position
      OffsetValueType cLast = cStart + cIt->length - 1;

      bool lineCompleted = false;
      const LineEncodingConstIterator mEnd = Neighbour.end();
      for(LineEncodingConstIterator mIt = Neighbour.begin();
        mIt != mEnd && !lineCompleted; ++mIt )
        {
        if ( mIt->label != cIt->label )
          {
          //runLength nL = *nIt;
          OffsetValueType nStart = mIt->where[0];
          OffsetValueType nLast = nStart + mIt->length - 1;

          // there are a few ways that neighbouring lines might overlap
          //   neighbor      S------------------E
          //   current    S------------------------E
          //-------------
          //   neighbor      S------------------E
          //   current    S----------------E
          //-------------
          //   neighbor      S------------------E
          //   current             S------------------E
          //-------------
          //   neighbor      S------------------E
          //   current             S-------E
          //-------------
          OffsetValueType ss1 = nStart - offset;
          // OffsetValueType ss2 = nStart + offset;
          // OffsetValueType ee1 = nLast - offset;
          OffsetValueType ee2 = nLast + offset;

          bool            eq = false;
          OffsetValueType oStart = 0;
          OffsetValueType oLast = 0;

          // the logic here can probably be improved a lot
          if ( ( ss1 >= cStart ) && ( ee2 <= cLast ) )
            {
            // case 1
            eq = true;
            oStart = ss1;
            oLast = ee2;
            }
          else if ( ( ss1 <= cStart ) && ( ee2 >= cLast ) )
            {
            // case 4
            eq = true;
            oStart = cStart;
            oLast = cLast;
            }
          else if ( ( ss1 <= cLast ) && ( ee2 >= cLast ) )
            {
            // case 2
            eq = true;
            oStart = ss1;
            oLast = cLast;
            }
          else if ( ( ss1 <= cStart ) && ( ee2 >= cStart ) )
            {
            // case 3
            eq = true;
            oStart = cStart;
            oLast = ee2;
            }

          if ( eq )
            {
            itkAssertInDebugAndIgnoreInReleaseMacro(oStart <= oLast);
            OutputIndexType idx = cIt->where;
            for ( OffsetValueType x = oStart; x <= oLast; ++x )
              {
              idx[0] = x;
              output->SetPixel(idx, cIt->label);
              }

            if ( oStart == cStart && oLast == cLast )
              {
              lineCompleted = true;
              }
            }
          }
        }
      }
    ++cIt;
    }
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
  os << indent << "BackgroundValue: "
     << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_BackgroundValue ) << std::endl;
}

// -----------------------------------------------------------------------------
template< typename TInputImage, typename TOutputImage >
void
LabelContourImageFilter< TInputImage, TOutputImage >
::Wait()
{
  if ( m_NumberOfThreads > 1 )
    {
    m_Barrier->Wait();
    }
}
} // end namespace itk

#endif