1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAdditiveGaussianNoiseImageFilter_h
#define itkAdditiveGaussianNoiseImageFilter_h
#include "itkNoiseBaseImageFilter.h"
namespace itk
{
/** \class AdditiveGaussianNoiseImageFilter
*
* \brief Alter an image with additive Gaussian white noise.
*
* Additive Gaussian white noise can be modeled as:
*
* \par
* \f$ I = I_0 + N \f$
*
* \par
* where \f$ I \f$ is the observed image, \f$ I_0 \f$ is the noise-free image
* and \f$ N \f$ is a normally distributed random variable of mean \f$ \mu \f$
* and variance \f$ \sigma^2 \f$:
*
* \par
* \f$ N \sim \mathcal{N}(\mu, \sigma^2) \f$
*
* The noise is independent of the pixel intensities.
*
* \author Gaetan Lehmann
*
* This code was contributed in the Insight Journal paper "Noise
* Simulation". https://hdl.handle.net/10380/3158
*
* \ingroup ITKImageNoise
*/
template <class TInputImage, class TOutputImage=TInputImage>
class ITK_TEMPLATE_EXPORT AdditiveGaussianNoiseImageFilter :
public NoiseBaseImageFilter<TInputImage,TOutputImage >
{
public:
/** Standard class typedefs. */
typedef AdditiveGaussianNoiseImageFilter Self;
typedef NoiseBaseImageFilter< TInputImage,TOutputImage > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(AdditiveGaussianNoiseImageFilter, NoiseBaseImageFilter);
/** Superclass typedefs. */
typedef typename Superclass::OutputImageType OutputImageType;
typedef typename Superclass::OutputImagePointer OutputImagePointer;
typedef typename Superclass::OutputImageRegionType OutputImageRegionType;
typedef typename Superclass::OutputImagePixelType OutputImagePixelType;
/** Some convenient typedefs. */
typedef TInputImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointer;
typedef typename InputImageType::ConstPointer InputImageConstPointer;
typedef typename InputImageType::RegionType InputImageRegionType;
typedef typename InputImageType::PixelType InputImagePixelType;
/** Set/Get the mean of the Gaussian distribution.
* Defaults to 0.0. */
itkGetConstMacro(Mean, double);
itkSetMacro(Mean, double);
/** Set/Get the standard deviation of the Gaussian distribution.
* Defaults to 1.0. */
itkGetConstMacro(StandardDeviation, double);
itkSetMacro(StandardDeviation, double);
#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro(InputConvertibleToOutputCheck,
(Concept::Convertible<typename TInputImage::PixelType,
typename TOutputImage::PixelType>) );
/** End concept checking */
#endif
protected:
AdditiveGaussianNoiseImageFilter();
virtual ~AdditiveGaussianNoiseImageFilter() ITK_OVERRIDE {}
void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, ThreadIdType threadId ) ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(AdditiveGaussianNoiseImageFilter);
double m_Mean;
double m_StandardDeviation;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkAdditiveGaussianNoiseImageFilter.hxx"
#endif
#endif
|