1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAdditiveGaussianNoiseImageFilter_hxx
#define itkAdditiveGaussianNoiseImageFilter_hxx
#include "itkAdditiveGaussianNoiseImageFilter.h"
#include "itkImageScanlineIterator.h"
#include "itkProgressReporter.h"
#include "itkNormalVariateGenerator.h"
namespace itk
{
template <class TInputImage, class TOutputImage>
AdditiveGaussianNoiseImageFilter<TInputImage, TOutputImage>
::AdditiveGaussianNoiseImageFilter() :
m_Mean( 0.0 ),
m_StandardDeviation( 1.0 )
{
}
template <class TInputImage, class TOutputImage>
void
AdditiveGaussianNoiseImageFilter<TInputImage, TOutputImage>
::ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread,
ThreadIdType threadId)
{
const InputImageType* inputPtr = this->GetInput();
OutputImageType* outputPtr = this->GetOutput(0);
// Create a random generator per thread
typename Statistics::NormalVariateGenerator::Pointer randn = Statistics::NormalVariateGenerator::New();
const uint32_t seed = Self::Hash( this->GetSeed(), threadId );
// Convert the seed bit for bit to int32
randn->Initialize(*reinterpret_cast<const int32_t*>( &seed ));
// Define the portion of the input to walk for this thread, using
// the CallCopyOutputRegionToInputRegion method allows for the input
// and output images to be different dimensions
InputImageRegionType inputRegionForThread;
this->CallCopyOutputRegionToInputRegion(inputRegionForThread, outputRegionForThread);
// Define the iterators
ImageScanlineConstIterator<TInputImage> inputIt(inputPtr, inputRegionForThread);
ImageScanlineIterator<TOutputImage> outputIt(outputPtr, outputRegionForThread);
ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels() );
inputIt.GoToBegin();
outputIt.GoToBegin();
while ( !inputIt.IsAtEnd() )
{
while ( !inputIt.IsAtEndOfLine() )
{
const double out = inputIt.Get() + m_Mean + m_StandardDeviation * randn->GetVariate();
outputIt.Set( Self::ClampCast(out) );
++inputIt;
++outputIt;
}
inputIt.NextLine();
outputIt.NextLine();
progress.CompletedPixel(); // potential exception thrown here
}
}
template <class TInputImage, class TOutputImage>
void
AdditiveGaussianNoiseImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Mean: "
<< static_cast<typename NumericTraits<double>::PrintType>( m_Mean )
<< std::endl;
os << indent << "StandardDeviation: "
<< static_cast<typename NumericTraits<double>::PrintType>( m_StandardDeviation )
<< std::endl;
}
} // end namespace itk
#endif
|