File: itkSpeckleNoiseImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (131 lines) | stat: -rw-r--r-- 4,535 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkSpeckleNoiseImageFilter_hxx
#define itkSpeckleNoiseImageFilter_hxx

#include "itkSpeckleNoiseImageFilter.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkImageScanlineIterator.h"
#include "itkProgressReporter.h"

namespace itk
{

template <class TInputImage, class TOutputImage>
SpeckleNoiseImageFilter<TInputImage, TOutputImage>
::SpeckleNoiseImageFilter() :
  m_StandardDeviation( 1.0 )
{
}

template <class TInputImage, class TOutputImage>
void
SpeckleNoiseImageFilter<TInputImage, TOutputImage>
::ThreadedGenerateData( const OutputImageRegionType &outputRegionForThread, ThreadIdType threadId)
{
  const InputImageType* inputPtr = this->GetInput();
  OutputImageType*      outputPtr = this->GetOutput(0);

  // Create a random generator per thread
  typename Statistics::MersenneTwisterRandomVariateGenerator::Pointer rand =
    Statistics::MersenneTwisterRandomVariateGenerator::New();
  const uint32_t seed = Self::Hash( this->GetSeed(), threadId );
  rand->Initialize(seed);

  // Define the portion of the input to walk for this thread, using
  // the CallCopyOutputRegionToInputRegion method allows for the input
  // and output images to be different dimensions
  InputImageRegionType inputRegionForThread;
  this->CallCopyOutputRegionToInputRegion(inputRegionForThread, outputRegionForThread);

  // Define the iterators
  ImageScanlineConstIterator<TInputImage> inputIt(inputPtr, inputRegionForThread);
  ImageScanlineIterator<TOutputImage>     outputIt(outputPtr, outputRegionForThread);

  ProgressReporter progress(this, threadId, outputRegionForThread.GetNumberOfPixels() );

  inputIt.GoToBegin();
  outputIt.GoToBegin();

  // Choose the value of the gamma distribution so that the mean is 1 and the
  // variance depends on the standard deviation
  const double theta = m_StandardDeviation * m_StandardDeviation;
  const double k = 1 / theta;

  const double floork = Math::Floor<double>( k );
  const double delta = k - floork;
  const double v0 = Math::e / ( Math::e + delta );

  while ( !inputIt.IsAtEnd() )
    {
    while ( !inputIt.IsAtEndOfLine() )
      {
      // First generate the gamma distributed random variable
      // ref http://en.wikipedia.org/wiki/Gamma_distribution#Generating_gamma-distributed_random_variables
      double xi;
      double nu;
      do
        {
        const double v1 = 1.0 - rand->GetVariateWithOpenUpperRange(); // open *lower* range -- (0,1]
        const double v2 = 1.0 - rand->GetVariateWithOpenUpperRange();
        const double v3 = 1.0 - rand->GetVariateWithOpenUpperRange();
        if( v1 <= v0 )
          {
          xi = std::pow( v2, 1 / delta );
          nu = v3 * std::pow( xi, delta - 1.0 );
          }
        else
          {
          xi = 1.0 - std::log( v2 );
          nu = v3 * std::exp( -xi );
          }
        }
      while( nu > std::exp( -xi ) * std::pow( xi, delta - 1.0 ) );
      double gamma = xi;
      for( int i = 0; i < floork; i++ )
        {
        gamma -= std::log( 1.0 - rand->GetVariateWithOpenUpperRange() );
        }
      gamma *= theta;
      // Apply multiplicative noise
      const double out = gamma * inputIt.Get();
      outputIt.Set( Self::ClampCast( out )  );
      ++inputIt;
      ++outputIt;
      }
    inputIt.NextLine();
    outputIt.NextLine();
    progress.CompletedPixel();  // potential exception thrown here
    }
}

template <class TInputImage, class TOutputImage>
void
SpeckleNoiseImageFilter<TInputImage, TOutputImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "StandardDeviation: "
     << static_cast<typename NumericTraits<double>::PrintType>( m_StandardDeviation )
     << std::endl;
}
} // end namespace itk

#endif