1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLabelStatisticsImageFilter_h
#define itkLabelStatisticsImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkNumericTraits.h"
#include "itkSimpleDataObjectDecorator.h"
#include "itksys/hash_map.hxx"
#include "itkHistogram.h"
#include "itkFastMutexLock.h"
#include <vector>
namespace itk
{
/** \class LabelStatisticsImageFilter
* \brief Given an intensity image and a label map, compute min, max, variance and mean of the pixels associated with each label or segment
*
* LabelStatisticsImageFilter computes the minimum, maximum, sum,
* mean, median, variance and sigma of regions of an intensity image, where
* the regions are defined via a label map (a second input). The
* label image should be integral type. The filter needs all of its
* input image. It behaves as a filter with an input and output. Thus
* it can be inserted in a pipline with other filters and the
* statistics will only be recomputed if a downstream filter changes.
*
* Optionally, the filter also computes intensity histograms on each
* object. If histograms are enabled, a median intensity value can
* also be computed, although its accuracy is limited to the bin width
* of the histogram. If histograms are not enabled, the median returns
* zero.
*
* The filter passes its intensity input through unmodified. The filter is
* threaded. It computes statistics in each thread then combines them in
* its AfterThreadedGenerate method.
*
* \ingroup MathematicalStatisticsImageFilters
* \ingroup ITKImageStatistics
*
* \wiki
* \wikiexample{ImageProcessing/LabelStatisticsImageFilter,Get statistical properties of labeled regions in an image}
* \endwiki
*/
template< typename TInputImage, typename TLabelImage >
class ITK_TEMPLATE_EXPORT LabelStatisticsImageFilter:
public ImageToImageFilter< TInputImage, TInputImage >
{
public:
/** Standard Self typedef */
typedef LabelStatisticsImageFilter Self;
typedef ImageToImageFilter< TInputImage, TInputImage > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Runtime information support. */
itkTypeMacro(LabelStatisticsImageFilter, ImageToImageFilter);
/** Image related typedefs. */
typedef typename TInputImage::Pointer InputImagePointer;
typedef typename TInputImage::RegionType RegionType;
typedef typename TInputImage::SizeType SizeType;
typedef typename TInputImage::IndexType IndexType;
typedef typename TInputImage::PixelType PixelType;
/** Label image related typedefs. */
typedef TLabelImage LabelImageType;
typedef typename TLabelImage::Pointer LabelImagePointer;
typedef typename TLabelImage::RegionType LabelRegionType;
typedef typename TLabelImage::SizeType LabelSizeType;
typedef typename TLabelImage::IndexType LabelIndexType;
typedef typename TLabelImage::PixelType LabelPixelType;
/** Image related typedefs. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
/** Type to use for computations. */
typedef typename NumericTraits< PixelType >::RealType RealType;
/** Smart Pointer type to a DataObject. */
typedef typename DataObject::Pointer DataObjectPointer;
/** Type of DataObjects used for scalar outputs */
typedef SimpleDataObjectDecorator< RealType > RealObjectType;
/** Bounding Box-related typedefs */
typedef std::vector< IndexValueType > BoundingBoxType;
/** Histogram-related typedefs */
typedef itk::Statistics::Histogram< RealType > HistogramType;
typedef typename HistogramType::Pointer HistogramPointer;
/** \class LabelStatistics
* \brief Statistics stored per label
* \ingroup ITKImageStatistics
*/
class LabelStatistics
{
public:
// default constructor
LabelStatistics()
{
// initialized to the default values
m_Count = NumericTraits< IdentifierType >::ZeroValue();
m_Sum = NumericTraits< RealType >::ZeroValue();
m_SumOfSquares = NumericTraits< RealType >::ZeroValue();
// Set such that the first pixel encountered can be compared
m_Minimum = NumericTraits< RealType >::max();
m_Maximum = NumericTraits< RealType >::NonpositiveMin();
// Default these to zero
m_Mean = NumericTraits< RealType >::ZeroValue();
m_Sigma = NumericTraits< RealType >::ZeroValue();
m_Variance = NumericTraits< RealType >::ZeroValue();
const unsigned int imageDimension = itkGetStaticConstMacro(ImageDimension);
m_BoundingBox.resize(imageDimension * 2);
for ( unsigned int i = 0; i < imageDimension * 2; i += 2 )
{
m_BoundingBox[i] = NumericTraits< IndexValueType >::max();
m_BoundingBox[i + 1] = NumericTraits< IndexValueType >::NonpositiveMin();
}
m_Histogram = ITK_NULLPTR;
}
// constructor with histogram enabled
LabelStatistics(int size, RealType lowerBound, RealType upperBound)
{
// initialized to the default values
m_Count = NumericTraits< IdentifierType >::ZeroValue();
m_Sum = NumericTraits< RealType >::ZeroValue();
m_SumOfSquares = NumericTraits< RealType >::ZeroValue();
// Set such that the first pixel encountered can be compared
m_Minimum = NumericTraits< RealType >::max();
m_Maximum = NumericTraits< RealType >::NonpositiveMin();
// Default these to zero
m_Mean = NumericTraits< RealType >::ZeroValue();
m_Sigma = NumericTraits< RealType >::ZeroValue();
m_Variance = NumericTraits< RealType >::ZeroValue();
const unsigned int imageDimension = itkGetStaticConstMacro(ImageDimension);
m_BoundingBox.resize(imageDimension * 2);
for ( unsigned int i = 0; i < imageDimension * 2; i += 2 )
{
m_BoundingBox[i] = NumericTraits< IndexValueType >::max();
m_BoundingBox[i + 1] = NumericTraits< IndexValueType >::NonpositiveMin();
}
// Histogram
m_Histogram = HistogramType::New();
typename HistogramType::SizeType hsize;
typename HistogramType::MeasurementVectorType lb;
typename HistogramType::MeasurementVectorType ub;
hsize.SetSize(1);
lb.SetSize(1);
ub.SetSize(1);
m_Histogram->SetMeasurementVectorSize(1);
hsize[0] = size;
lb[0] = lowerBound;
ub[0] = upperBound;
m_Histogram->Initialize(hsize, lb, ub);
}
// need copy constructor because of smart pointer to histogram
LabelStatistics(const LabelStatistics & l)
{
m_Count = l.m_Count;
m_Minimum = l.m_Minimum;
m_Maximum = l.m_Maximum;
m_Mean = l.m_Mean;
m_Sum = l.m_Sum;
m_SumOfSquares = l.m_SumOfSquares;
m_Sigma = l.m_Sigma;
m_Variance = l.m_Variance;
m_BoundingBox = l.m_BoundingBox;
m_Histogram = l.m_Histogram;
}
// added for completeness
LabelStatistics &operator= (const LabelStatistics& l)
{
if(this != &l)
{
m_Count = l.m_Count;
m_Minimum = l.m_Minimum;
m_Maximum = l.m_Maximum;
m_Mean = l.m_Mean;
m_Sum = l.m_Sum;
m_SumOfSquares = l.m_SumOfSquares;
m_Sigma = l.m_Sigma;
m_Variance = l.m_Variance;
m_BoundingBox = l.m_BoundingBox;
m_Histogram = l.m_Histogram;
}
return *this;
}
IdentifierType m_Count;
RealType m_Minimum;
RealType m_Maximum;
RealType m_Mean;
RealType m_Sum;
RealType m_SumOfSquares;
RealType m_Sigma;
RealType m_Variance;
BoundingBoxType m_BoundingBox;
typename HistogramType::Pointer m_Histogram;
};
/** Type of the map used to store data per label */
typedef itksys::hash_map< LabelPixelType, LabelStatistics > MapType;
typedef typename itksys::hash_map< LabelPixelType, LabelStatistics >::iterator MapIterator;
typedef typename itksys::hash_map< LabelPixelType, LabelStatistics >::const_iterator MapConstIterator;
typedef IdentifierType MapSizeType;
/** Type of the container used to store valid label values */
typedef std::vector<LabelPixelType> ValidLabelValuesContainerType;
// macros for Histogram enables
itkSetMacro(UseHistograms, bool);
itkGetConstMacro(UseHistograms, bool);
itkBooleanMacro(UseHistograms);
virtual const ValidLabelValuesContainerType &GetValidLabelValues() const
{
return m_ValidLabelValues;
}
/** Set the label image */
void SetLabelInput(const TLabelImage *input)
{
// Process object is not const-correct so the const casting is required.
this->SetNthInput( 1, const_cast< TLabelImage * >( input ) );
}
/** Get the label image */
const LabelImageType * GetLabelInput() const
{
return itkDynamicCastInDebugMode< LabelImageType * >( const_cast< DataObject * >( this->ProcessObject::GetInput(1) ) );
}
/** Does the specified label exist? Can only be called after a call
* a call to Update(). */
bool HasLabel(LabelPixelType label) const
{
return m_LabelStatistics.find(label) != m_LabelStatistics.end();
}
/** Get the number of labels used */
MapSizeType GetNumberOfObjects() const
{
return static_cast<MapSizeType>( m_LabelStatistics.size() );
}
MapSizeType GetNumberOfLabels() const
{
return static_cast<MapSizeType>( this->GetNumberOfObjects() );
}
/** Return the computed Minimum for a label. */
RealType GetMinimum(LabelPixelType label) const;
/** Return the computed Maximum for a label. */
RealType GetMaximum(LabelPixelType label) const;
/** Return the computed Mean for a label. */
RealType GetMean(LabelPixelType label) const;
/** Return the computed Median for a label. Requires histograms to be enabled!
*/
RealType GetMedian(LabelPixelType label) const;
/** Return the computed Standard Deviation for a label. */
RealType GetSigma(LabelPixelType label) const;
/** Return the computed Variance for a label. */
RealType GetVariance(LabelPixelType label) const;
/** Return the computed bounding box for a label. A vector of
* minIndex, maxIndex pairs for each axis. The intervals include
* the endpoints.*/
BoundingBoxType GetBoundingBox(LabelPixelType label) const;
/** Return the computed region. */
RegionType GetRegion(LabelPixelType label) const;
/** Return the compute Sum for a label. */
RealType GetSum(LabelPixelType label) const;
/** Return the number of pixels for a label. */
MapSizeType GetCount(LabelPixelType label) const;
/** Return the histogram for a label */
HistogramPointer GetHistogram(LabelPixelType label) const;
/** specify Histogram parameters */
void SetHistogramParameters(const int numBins, RealType lowerBound,
RealType upperBound);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro( InputHasNumericTraitsCheck,
( Concept::HasNumericTraits< PixelType > ) );
// End concept checking
#endif
protected:
LabelStatisticsImageFilter();
~LabelStatisticsImageFilter() ITK_OVERRIDE {}
void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
/** Pass the input through unmodified. Do this by Grafting in the
AllocateOutputs method. */
void AllocateOutputs() ITK_OVERRIDE;
/** Initialize some accumulators before the threads run. */
void BeforeThreadedGenerateData() ITK_OVERRIDE;
/** Do final mean and variance computation from data accumulated in threads.
*/
void AfterThreadedGenerateData() ITK_OVERRIDE;
/** Multi-thread version GenerateData. */
void ThreadedGenerateData(const RegionType &
outputRegionForThread,
ThreadIdType threadId) ITK_OVERRIDE;
// Override since the filter produces all of its output
void EnlargeOutputRequestedRegion(DataObject *data) ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(LabelStatisticsImageFilter);
std::vector< MapType > m_LabelStatisticsPerThread;
MapType m_LabelStatistics;
ValidLabelValuesContainerType m_ValidLabelValues;
bool m_UseHistograms;
typename HistogramType::SizeType m_NumBins;
RealType m_LowerBound;
RealType m_UpperBound;
SimpleFastMutexLock m_Mutex;
}; // end of class
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkLabelStatisticsImageFilter.hxx"
#endif
#endif
|