File: itkBinaryImageToLabelMapFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (652 lines) | stat: -rw-r--r-- 21,932 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBinaryImageToLabelMapFilter_hxx
#define itkBinaryImageToLabelMapFilter_hxx

#include "itkBinaryImageToLabelMapFilter.h"
#include "itkNumericTraits.h"

// don't think we need the indexed version as we only compute the
// index at the start of each run, but there isn't a choice
#include "itkImageLinearConstIteratorWithIndex.h"
#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkConnectedComponentAlgorithm.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::BinaryImageToLabelMapFilter()
{
  this->m_FullyConnected = false;
  this->m_NumberOfObjects = 0;
  this->m_OutputBackgroundValue = NumericTraits< OutputPixelType >::NonpositiveMin();
  this->m_InputForegroundValue = NumericTraits< InputPixelType >::max();
  this->m_ImageRegionSplitter = ImageRegionSplitterDirection::New();
  this->m_ImageRegionSplitter->SetDirection( 0 );
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need all the input.
  InputImagePointer input = const_cast< InputImageType * >( this->GetInput() );
  if ( !input )
    {
    return;
    }
  input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *)
{
  TOutputImage * output = this->GetOutput();
  output->SetRequestedRegion( output->GetLargestPossibleRegion() );
}

template< typename TInputImage, typename TOutputImage >
const ImageRegionSplitterBase *
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::GetImageRegionSplitter() const
{
  return this->m_ImageRegionSplitter.GetPointer();
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::BeforeThreadedGenerateData()
{
  OutputImageType * output = this->GetOutput();

  output->SetBackgroundValue(this->m_OutputBackgroundValue);

  SizeValueType nbOfThreads = this->GetNumberOfThreads();
  if ( itk::MultiThreader::GetGlobalMaximumNumberOfThreads() != 0 )
    {
    nbOfThreads = std::min( this->GetNumberOfThreads(), itk::MultiThreader::GetGlobalMaximumNumberOfThreads() );
    }

  // number of threads can be constrained by the region size, so call the
  // SplitRequestedRegion
  // to get the real number of threads which will be used
  typename OutputImageType::RegionType splitRegion;
  nbOfThreads = this->SplitRequestedRegion(0, nbOfThreads, splitRegion);
  const typename OutputImageType::RegionType & requestedRegion = output->GetRequestedRegion();
  const typename OutputImageType::SizeType & requestedSize = requestedRegion.GetSize();

  // set up the vars used in the threads
  this->m_NumberOfLabels.clear();
  this->m_NumberOfLabels.resize(nbOfThreads, 0);
  this->m_Barrier = Barrier::New();
  this->m_Barrier->Initialize(nbOfThreads);

  const SizeValueType pixelcount = requestedRegion.GetNumberOfPixels();
  const SizeValueType xsize = requestedSize[0];
  const SizeValueType linecount = pixelcount / xsize;
  m_LineMap.resize(linecount);
  m_FirstLineIdToJoin.resize(nbOfThreads - 1);
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::ThreadedGenerateData(const RegionType & outputRegionForThread,
                       ThreadIdType threadId)
{
  TOutputImage * output = this->GetOutput();
  const TInputImage * input = this->GetInput();

  const SizeValueType nbOfThreads = static_cast<const SizeValueType>( this->m_NumberOfLabels.size() );

  // create a line iterator
  typedef itk::ImageLinearConstIteratorWithIndex< InputImageType > InputLineIteratorType;
  InputLineIteratorType inLineIt(input, outputRegionForThread);
  inLineIt.SetDirection(0);

  // set the progress reporter to deal with the number of lines
  const SizeValueType pixelcountForThread = outputRegionForThread.GetNumberOfPixels();
  const SizeValueType xsizeForThread = outputRegionForThread.GetSize()[0];
  const SizeValueType linecountForThread = pixelcountForThread / xsizeForThread;
  ProgressReporter progress(this, threadId, linecountForThread, 75, 0.0f, 0.75f);

  // find the split axis
  const IndexType & outputRegionIdx = output->GetRequestedRegion().GetIndex();
  const IndexType & outputRegionForThreadIdx = outputRegionForThread.GetIndex();
  SizeType outputRegionSize = output->GetRequestedRegion().GetSize();
  const SizeType & outputRegionForThreadSize = outputRegionForThread.GetSize();
  int splitAxis = 0;
  for ( unsigned int i = 0; i < ImageDimension; ++i )
    {
    if ( outputRegionSize[i] != outputRegionForThreadSize[i] )
      {
      splitAxis = i;
      }
    }

  // compute the number of pixels before that threads
  outputRegionSize[splitAxis] = outputRegionForThreadIdx[splitAxis] - outputRegionIdx[splitAxis];
  const SizeValueType firstLineIdForThread =
    RegionType(outputRegionIdx, outputRegionSize).GetNumberOfPixels() / xsizeForThread;
  SizeValueType lineId = firstLineIdForThread;

  OffsetVectorType LineOffsets;
  this->SetupLineOffsets(LineOffsets);

  SizeValueType nbOfLabels = 0;
  for ( inLineIt.GoToBegin();
        !inLineIt.IsAtEnd();
        inLineIt.NextLine() )
    {
    inLineIt.GoToBeginOfLine();
    lineEncoding thisLine;
    while ( !inLineIt.IsAtEndOfLine() )
      {
      const InputPixelType pixelValue = inLineIt.Get();
      if ( pixelValue == this->m_InputForegroundValue )
        {
        // We've hit the start of a run
        runLength thisRun;
        SizeValueType length = 0;
        IndexType thisIndex;
        thisIndex = inLineIt.GetIndex();
        ++length;
        ++inLineIt;
        while ( !inLineIt.IsAtEndOfLine()
                && inLineIt.Get() == this->m_InputForegroundValue )
          {
          ++length;
          ++inLineIt;
          }
        // create the run length object to go in the vector
        thisRun.length = length;
        thisRun.label = 0; // will give a real label later
        thisRun.where = thisIndex;
        thisLine.push_back(thisRun);
        ++nbOfLabels;
        }
      else
        {
        ++inLineIt;
        }
      }
    m_LineMap[lineId] = thisLine;
    ++lineId;
    progress.CompletedPixel();
    }

  this->m_NumberOfLabels[threadId] = nbOfLabels;

  // wait for the other threads to complete that part
  this->Wait();

  // compute the total number of labels
  nbOfLabels = 0;
  for ( SizeValueType i = 0; i < nbOfThreads; ++i )
    {
    nbOfLabels += this->m_NumberOfLabels[i];
    }

  if ( threadId == 0 )
    {
    // set up the union find structure
    this->InitUnion(nbOfLabels);
    // insert all the labels into the structure -- an extra loop but
    // saves complicating the ones that come later
    typename LineMapType::iterator MapBegin, MapEnd, LineIt;
    MapBegin = m_LineMap.begin();
    MapEnd = m_LineMap.end();
    LineIt = MapBegin;
    InternalLabelType label = 1;
    for ( LineIt = MapBegin; LineIt != MapEnd; ++LineIt )
      {
      typename lineEncoding::iterator cIt;
      for ( cIt = LineIt->begin(); cIt != LineIt->end(); ++cIt )
        {
        cIt->label = label;
        this->InsertSet(label);
        label++;
        }
      }
    }

  // wait for the other threads to complete that part
  this->Wait();

  // now process the map and make appropriate entries in an equivalence
  // table
  const SizeValueType pixelcount = output->GetRequestedRegion().GetNumberOfPixels();
  const SizeValueType xsize = output->GetRequestedRegion().GetSize()[0];
  const OffsetValueType linecount = pixelcount / xsize;

  SizeValueType lastLineIdForThread =  linecount;
  OffsetValueType nbOfLineIdToJoin = 0;
  if ( static_cast<SizeValueType>( threadId ) + 1 != nbOfThreads )
    {
    SizeType localRegionSize = outputRegionForThreadSize;
    localRegionSize[splitAxis] -= 1;
    lastLineIdForThread = firstLineIdForThread
                          + RegionType(outputRegionIdx, localRegionSize).GetNumberOfPixels() / xsizeForThread;
    m_FirstLineIdToJoin[threadId] = lastLineIdForThread;
    // found the number of line ids to join
    nbOfLineIdToJoin =
      RegionType( outputRegionIdx, outputRegionForThread.GetSize() ).GetNumberOfPixels() / xsizeForThread
      - RegionType(outputRegionIdx, localRegionSize).GetNumberOfPixels() / xsizeForThread;
    }

  for ( SizeValueType thisIdx = firstLineIdForThread; thisIdx < lastLineIdForThread; ++thisIdx )
    {
    if ( !m_LineMap[thisIdx].empty() )
      {
      typename OffsetVectorType::const_iterator I = LineOffsets.begin();
      while ( I != LineOffsets.end() )
        {
        OffsetValueType NeighIdx = thisIdx + ( *I );
        // check if the neighbor is in the map
        if ( NeighIdx >= 0 && NeighIdx < linecount && !m_LineMap[NeighIdx].empty() )
          {
          // Now check whether they are really neighbors
          bool areNeighbors = this->CheckNeighbors(m_LineMap[thisIdx][0].where, m_LineMap[NeighIdx][0].where);
          if ( areNeighbors )
            {
            // Compare the two lines
            this->CompareLines(m_LineMap[thisIdx], m_LineMap[NeighIdx]);
            }
          }
        ++I;
        }
      }
    }

  // wait for the other threads to complete that part
  this->Wait();

  while ( m_FirstLineIdToJoin.size() != 0 )
    {
    const SizeValueType threadChunk = 2 * threadId;
    if ( threadChunk < (SizeValueType)m_FirstLineIdToJoin.size() )
      {
      for ( SizeValueType thisIdx = m_FirstLineIdToJoin[threadChunk];
            thisIdx < m_FirstLineIdToJoin[threadChunk] + nbOfLineIdToJoin;
            ++thisIdx )
        {
        if ( !m_LineMap[thisIdx].empty() )
          {
          typename OffsetVectorType::const_iterator I = LineOffsets.begin();
          while ( I != LineOffsets.end() )
            {
            OffsetValueType NeighIdx = thisIdx + ( *I );
            // check if the neighbor is in the map
            if ( NeighIdx >= 0 && NeighIdx < linecount && !m_LineMap[NeighIdx].empty() )
              {
              // Now check whether they are really neighbors
              bool areNeighbors =
                CheckNeighbors(m_LineMap[thisIdx][0].where, m_LineMap[NeighIdx][0].where);
              if ( areNeighbors )
                {
                // Compare the two lines
                CompareLines(m_LineMap[thisIdx], m_LineMap[NeighIdx]);
                }
              }
            ++I;
            }
          }
        }
      }

    this->Wait();

    if ( threadId == 0 )
      {
      // remove the region already joined
      typename std::vector< SizeValueType > newFirstLineIdToJoin;
      for ( SizeValueType i = 1; i < (SizeValueType)m_FirstLineIdToJoin.size(); i += 2 )
        {
        newFirstLineIdToJoin.push_back(m_FirstLineIdToJoin[i]);
        }
      m_FirstLineIdToJoin = newFirstLineIdToJoin;
      }

    this->Wait();
    }
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::AfterThreadedGenerateData()
{
  typename TOutputImage::Pointer output = this->GetOutput();
  typename TInputImage::ConstPointer input = this->GetInput();
  const SizeValueType pixelcount = output->GetRequestedRegion().GetNumberOfPixels();
  const SizeValueType xsize = output->GetRequestedRegion().GetSize()[0];
  const SizeValueType linecount = pixelcount / xsize;
  m_NumberOfObjects = CreateConsecutive();
  ProgressReporter  progress(this, 0, linecount, 25, 0.75f, 0.25f);
  // check for overflow exception here
  if ( m_NumberOfObjects > static_cast< SizeValueType >( NumericTraits< OutputPixelType >::max() ) )
    {
    itkExceptionMacro(
      << "Number of objects (" << m_NumberOfObjects << ") greater than maximum of output pixel type ("
      << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( NumericTraits< OutputPixelType >::
                                                                                   max() ) << ").");
    }

  for ( SizeValueType thisIdx = 0; thisIdx < linecount; thisIdx++ )
    {
    // now fill the labelled sections
    typedef typename lineEncoding::const_iterator LineIterator;

    LineIterator cIt = m_LineMap[thisIdx].begin();
    const LineIterator cEnd = m_LineMap[thisIdx].end();

    while ( cIt != cEnd )
      {
      const InternalLabelType Ilab = LookupSet(cIt->label);
      const OutputPixelType lab = m_Consecutive[Ilab];
      output->SetLine(cIt->where, cIt->length, lab);
      ++cIt;
      }
    progress.CompletedPixel();
    }

  this->m_NumberOfLabels.clear();
  this->m_Barrier = ITK_NULLPTR;

  m_LineMap.clear();
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::SetupLineOffsets(OffsetVectorType & LineOffsets)
{
  // Create a neighborhood so that we can generate a table of offsets
  // to "previous" line indexes
  // We are going to mis-use the neighborhood iterators to compute the
  // offset for us. All this messing around produces an array of
  // offsets that will be used to index the map
  typename TOutputImage::Pointer output = this->GetOutput();
  typedef Image< OffsetValueType, TOutputImage::ImageDimension - 1 >      PretendImageType;
  typedef typename PretendImageType::RegionType::SizeType                 PretendSizeType;
  typedef typename PretendImageType::RegionType::IndexType                PretendIndexType;
  typedef ConstShapedNeighborhoodIterator< PretendImageType >             LineNeighborhoodType;

  typename PretendImageType::Pointer fakeImage;
  fakeImage = PretendImageType::New();

  typename PretendImageType::RegionType LineRegion;
  //LineRegion = PretendImageType::RegionType::New();

  OutSizeType OutSize = output->GetRequestedRegion().GetSize();

  PretendSizeType PretendSize;
  // The first dimension has been collapsed
  for ( SizeValueType i = 0; i < PretendSize.GetSizeDimension(); i++ )
    {
    PretendSize[i] = OutSize[i + 1];
    }

  LineRegion.SetSize(PretendSize);
  fakeImage->SetRegions(LineRegion);
  PretendSizeType kernelRadius;
  kernelRadius.Fill(1);
  LineNeighborhoodType lnit(kernelRadius, fakeImage, LineRegion);

  // only activate the indices that are "previous" to the current
  // pixel and face connected (exclude the center pixel from the
  // neighborhood)
  //
  setConnectivityPrevious(&lnit, m_FullyConnected);

  typename LineNeighborhoodType::IndexListType ActiveIndexes;
  ActiveIndexes = lnit.GetActiveIndexList();

  typename LineNeighborhoodType::IndexListType::const_iterator LI;

  PretendIndexType idx = LineRegion.GetIndex();
  OffsetValueType  offset = fakeImage->ComputeOffset(idx);

  for ( LI = ActiveIndexes.begin(); LI != ActiveIndexes.end(); LI++ )
    {
    LineOffsets.push_back(fakeImage->ComputeOffset( idx + lnit.GetOffset(*LI) ) - offset);
    }

  // LineOffsets is the thing we wanted.
}

template< typename TInputImage, typename TOutputImage >
bool
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::CheckNeighbors(const OutputIndexType & A,
                 const OutputIndexType & B)
{
  // this checks whether the line encodings are really neighbors. The
  // first dimension gets ignored because the encodings are along that
  // axis
  for ( unsigned i = 1; i < OutputImageDimension; i++ )
    {
    if ( itk::Math::abs(A[i] - B[i]) > 1 )
      {
      return false;
      }
    }
  return true;
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::CompareLines(lineEncoding & current, const lineEncoding & Neighbour)
{
  OffsetValueType offset = 0;

  if ( m_FullyConnected )
    {
    offset = 1;
    }

  typename lineEncoding::const_iterator nIt, mIt;
  typename lineEncoding::iterator cIt;

  mIt = Neighbour.begin(); // out marker iterator

  for ( cIt = current.begin(); cIt != current.end(); ++cIt )
    {
    //runLength cL = *cIt;
    OffsetValueType cStart = cIt->where[0];  // the start x position
    OffsetValueType cLast = cStart + cIt->length - 1;

    for ( nIt = mIt; nIt != Neighbour.end(); ++nIt )
      {
      //runLength nL = *nIt;
      OffsetValueType nStart = nIt->where[0];
      OffsetValueType nLast = nStart + nIt->length - 1;
      // there are a few ways that neighbouring lines might overlap
      //   neighbor      S------------------E
      //   current    S------------------------E
      //-------------
      //   neighbor      S------------------E
      //   current    S----------------E
      //-------------
      //   neighbor      S------------------E
      //   current             S------------------E
      //-------------
      //   neighbor      S------------------E
      //   current             S-------E
      //-------------
      OffsetValueType ss1 = nStart - offset;
      // OffsetValueType ss2 = nStart + offset;
      OffsetValueType ee1 = nLast - offset;
      OffsetValueType ee2 = nLast + offset;
      bool            eq = false;
      // the logic here can probably be improved a lot
      if ( ( ss1 >= cStart ) && ( ee2 <= cLast ) )
        {
        // case 1
        eq = true;
        }
      else if ( ( ss1 <= cStart ) && ( ee2 >= cLast ) )
        {
        // case 4 - must be tested before case 2 to not be detected as a case 2
        eq = true;
        }
      else if ( ( ss1 <= cLast ) && ( ee2 >= cLast ) )
        {
        // case 2
        eq = true;
        }
      else if ( ( ss1 <= cStart ) && ( ee2 >= cStart ) )
        {
        // case 3
        eq = true;
        }

      if ( eq )
        {
        LinkLabels(nIt->label, cIt->label);
        }

      if ( ee1 >= cLast )
        {
        // No point looking for more overlaps with the current run
        // because the neighbor run is either case 2 or 4
        mIt = nIt;
        break;
        }
      }
    }
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::InitUnion(const InternalLabelType size)
{
  m_UnionFind = UnionFindType(size + 1);
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::Wait()
{
  // use m_NumberOfLabels.size() to get the number of thread used
  if ( m_NumberOfLabels.size() > 1 )
    {
    m_Barrier->Wait();
    }
}

// union find related functions
template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::InsertSet(const InternalLabelType label)
{
  m_UnionFind[label] = label;
}

template< typename TInputImage, typename TOutputImage >
typename BinaryImageToLabelMapFilter< TInputImage, TOutputImage >::SizeValueType
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::CreateConsecutive()
{
  const size_t N = m_UnionFind.size();

  m_Consecutive = ConsecutiveVectorType( N );
  m_Consecutive[ 0 ] = this->m_OutputBackgroundValue;

  OutputPixelType consecutiveLabel = 0;
  SizeValueType count = 0;

  for ( size_t i = 1; i < N; i++ )
    {
    const size_t label = static_cast< size_t >( m_UnionFind[i] );
    if ( label == i )
      {
      if ( consecutiveLabel == this->m_OutputBackgroundValue )
        {
        ++consecutiveLabel;
        }
      m_Consecutive[label] = consecutiveLabel;
      ++consecutiveLabel;
      ++count;
      }
    }
  return count;
}

template< typename TInputImage, typename TOutputImage >
typename BinaryImageToLabelMapFilter< TInputImage, TOutputImage >::InternalLabelType
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::LookupSet(const InternalLabelType label)
{
  // recursively set the equivalence if necessary
  if ( label != m_UnionFind[label] )
    {
    m_UnionFind[label] = this->LookupSet(m_UnionFind[label]);
    }
  return ( m_UnionFind[label] );
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::LinkLabels(const InternalLabelType lab1, const InternalLabelType lab2)
{
  InternalLabelType E1 = this->LookupSet(lab1);
  InternalLabelType E2 = this->LookupSet(lab2);

  if ( E1 < E2 )
    {
    m_UnionFind[E2] = E1;
    }
  else
    {
    m_UnionFind[E1] = E2;
    }
}

template< typename TInputImage, typename TOutputImage >
void
BinaryImageToLabelMapFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
  os << indent << "InputForegroundValue: "
     << static_cast< typename NumericTraits< InputPixelType >::PrintType >( this->m_InputForegroundValue ) << std::endl;
  os << indent << "OutputBackgroundValue: "
     << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( this->m_OutputBackgroundValue )
     << std::endl;
  os << indent << "Number of Objects: " << this->m_NumberOfObjects << std::endl;
}
} // end namespace itk

#endif