File: itkBinaryImageToStatisticsLabelMapFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (120 lines) | stat: -rw-r--r-- 4,827 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBinaryImageToStatisticsLabelMapFilter_hxx
#define itkBinaryImageToStatisticsLabelMapFilter_hxx

#include "itkBinaryImageToStatisticsLabelMapFilter.h"
#include "itkProgressAccumulator.h"

namespace itk
{
template< typename TInputImage, typename TFeatureImage, typename TOutputImage >
BinaryImageToStatisticsLabelMapFilter< TInputImage, TFeatureImage, TOutputImage >
::BinaryImageToStatisticsLabelMapFilter()
{
  m_OutputBackgroundValue = NumericTraits< OutputImagePixelType >::NonpositiveMin();
  m_InputForegroundValue = NumericTraits< InputImagePixelType >::max();
  m_FullyConnected = false;
  m_ComputeFeretDiameter = false;
  m_ComputePerimeter = true;
  m_NumberOfBins = 128;
  m_ComputeHistogram = true;
  this->SetNumberOfRequiredInputs(2);
}

template< typename TInputImage, typename TFeatureImage, typename TOutputImage >
void
BinaryImageToStatisticsLabelMapFilter< TInputImage, TFeatureImage, TOutputImage >
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need all the input.
  InputImagePointer input = const_cast< InputImageType * >( this->GetInput() );
  if ( input )
    {
    input->SetRequestedRegion( input->GetLargestPossibleRegion() );
    }
}

template< typename TInputImage, typename TFeatureImage, typename TOutputImage >
void
BinaryImageToStatisticsLabelMapFilter< TInputImage, TFeatureImage, TOutputImage >
::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()
  ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}

template< typename TInputImage, typename TFeatureImage, typename TOutputImage >
void
BinaryImageToStatisticsLabelMapFilter< TInputImage, TFeatureImage, TOutputImage >
::GenerateData()
{
  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();

  progress->SetMiniPipelineFilter(this);

  // Allocate the output
  this->AllocateOutputs();

  typename LabelizerType::Pointer labelizer = LabelizerType::New();
  labelizer->SetInput( this->GetInput() );
  labelizer->SetInputForegroundValue(m_InputForegroundValue);
  labelizer->SetOutputBackgroundValue(m_OutputBackgroundValue);
  labelizer->SetFullyConnected(m_FullyConnected);
  labelizer->SetNumberOfThreads( this->GetNumberOfThreads() );
  progress->RegisterInternalFilter(labelizer, .5f);

  typename LabelObjectValuatorType::Pointer valuator = LabelObjectValuatorType::New();
  valuator->SetInput( labelizer->GetOutput() );
  valuator->SetFeatureImage( this->GetFeatureImage() );
  valuator->SetNumberOfThreads( this->GetNumberOfThreads() );
  valuator->SetComputePerimeter(m_ComputePerimeter);
  valuator->SetComputeFeretDiameter(m_ComputeFeretDiameter);
  valuator->SetComputeHistogram(m_ComputeHistogram);
  valuator->SetNumberOfBins(m_NumberOfBins);
  progress->RegisterInternalFilter(valuator, .5f);

  valuator->GraftOutput( this->GetOutput() );
  valuator->Update();
  this->GraftOutput( valuator->GetOutput() );
}

template< typename TInputImage, typename TFeatureImage, typename TOutputImage >
void
BinaryImageToStatisticsLabelMapFilter< TInputImage, TFeatureImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
  os << indent << "OutputBackgroundValue: "
     << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_OutputBackgroundValue )
     << std::endl;
  os << indent << "InputForegroundValue: "
     << static_cast< typename NumericTraits< OutputImagePixelType >::PrintType >( m_InputForegroundValue ) << std::endl;
  os << indent << "ComputeFeretDiameter: " << m_ComputeFeretDiameter << std::endl;
  os << indent << "ComputePerimeter: " << m_ComputePerimeter << std::endl;
  os << indent << "ComputeHistogram: " << m_ComputeHistogram << std::endl;
  os << indent << "NumberOfBins: " << m_NumberOfBins << std::endl;
}
} // end namespace itk
#endif