1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveGaussianImageFilter_hxx
#define itkRecursiveGaussianImageFilter_hxx
#include "itkRecursiveGaussianImageFilter.h"
#include "itkObjectFactory.h"
#include "itkImageLinearIteratorWithIndex.h"
#include <new>
namespace itk
{
template< typename TInputImage, typename TOutputImage >
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::RecursiveGaussianImageFilter()
{
m_Sigma = 1.0;
m_NormalizeAcrossScale = false;
m_Order = ZeroOrder;
}
/**
* Explicitly set a zeroth order derivative.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetZeroOrder()
{
this->SetOrder(ZeroOrder);
}
/**
* Explicitly set a first order derivative.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetFirstOrder()
{
this->SetOrder(FirstOrder);
}
/**
* Explicitly set a second order derivative.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetSecondOrder()
{
this->SetOrder(SecondOrder);
}
/**
* Compute filter for Gaussian kernel.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::SetUp(ScalarRealType spacing)
{
const ScalarRealType spacingTolerance = 1e-8;
/** Parameters of exponential series. */
ScalarRealType A1[3];
ScalarRealType B1[3];
ScalarRealType W1;
ScalarRealType L1;
ScalarRealType A2[3];
ScalarRealType B2[3];
ScalarRealType W2;
ScalarRealType L2;
ScalarRealType direction = 1.0;
if ( spacing < 0.0 )
{
direction = -1.0;
spacing = -spacing;
}
if ( spacing < spacingTolerance )
{
itkExceptionMacro(<< "The spacing " << spacing << "is suspiciosly small in this image");
}
const ScalarRealType sigmad = m_Sigma / spacing;
ScalarRealType across_scale_normalization = 1.0;
A1[0] = static_cast< ScalarRealType >( 1.3530 );
B1[0] = static_cast< ScalarRealType >( 1.8151 );
W1 = static_cast< ScalarRealType >( 0.6681 );
L1 = static_cast< ScalarRealType >( -1.3932 );
A2[0] = static_cast< ScalarRealType >( -0.3531 );
B2[0] = static_cast< ScalarRealType >( 0.0902 );
W2 = static_cast< ScalarRealType >( 2.0787 );
L2 = static_cast< ScalarRealType >( -1.3732 );
A1[1] = static_cast< ScalarRealType >( -0.6724 );
B1[1] = static_cast< ScalarRealType >( -3.4327 );
A2[1] = static_cast< ScalarRealType >( 0.6724 );
B2[1] = static_cast< ScalarRealType >( 0.6100 );
A1[2] = static_cast< ScalarRealType >( -1.3563 );
B1[2] = static_cast< ScalarRealType >( 5.2318 );
A2[2] = static_cast< ScalarRealType >( 0.3446 );
B2[2] = static_cast< ScalarRealType >( -2.2355 );
ScalarRealType SD, DD, ED;
this->ComputeDCoefficients(sigmad, W1, L1, W2, L2, SD, DD, ED);
ScalarRealType SN, DN, EN;
switch ( m_Order )
{
case ZeroOrder:
{
// Approximation of convolution with a gaussian.
ComputeNCoefficients(sigmad,
A1[0], B1[0], W1, L1,
A2[0], B2[0], W2, L2,
this->m_N0,
this->m_N1,
this->m_N2,
this->m_N3,
SN, DN, EN);
ScalarRealType alpha0 = 2 * SN / SD - this->m_N0;
this->m_N0 *= across_scale_normalization / alpha0;
this->m_N1 *= across_scale_normalization / alpha0;
this->m_N2 *= across_scale_normalization / alpha0;
this->m_N3 *= across_scale_normalization / alpha0;
const bool symmetric = true;
this->ComputeRemainingCoefficients(symmetric);
break;
}
case FirstOrder:
{
if ( this->GetNormalizeAcrossScale() )
{
across_scale_normalization = m_Sigma;
}
// Approximation of convolution with the first derivative of a Gaussian
ComputeNCoefficients(sigmad,
A1[1], B1[1], W1, L1,
A2[1], B2[1], W2, L2,
this->m_N0, this->m_N1, this->m_N2, this->m_N3,
SN, DN, EN);
ScalarRealType alpha1 = 2 * ( SN * DD - DN * SD ) / ( SD * SD );
// If negative spacing, negate the first derivative response.
alpha1 *= direction;
this->m_N0 *= across_scale_normalization / alpha1;
this->m_N1 *= across_scale_normalization / alpha1;
this->m_N2 *= across_scale_normalization / alpha1;
this->m_N3 *= across_scale_normalization / alpha1;
const bool symmetric = false;
this->ComputeRemainingCoefficients(symmetric);
break;
}
case SecondOrder:
{
if ( this->GetNormalizeAcrossScale() )
{
across_scale_normalization = itk::Math::sqr( m_Sigma );
}
// Approximation of convolution with the second derivative of a
// Gaussian.
ScalarRealType N0_0, N1_0, N2_0, N3_0;
ScalarRealType N0_2, N1_2, N2_2, N3_2;
ScalarRealType SN0, DN0, EN0;
ScalarRealType SN2, DN2, EN2;
ComputeNCoefficients(sigmad,
A1[0], B1[0], W1, L1,
A2[0], B2[0], W2, L2,
N0_0, N1_0, N2_0, N3_0,
SN0, DN0, EN0);
ComputeNCoefficients(sigmad,
A1[2], B1[2], W1, L1,
A2[2], B2[2], W2, L2,
N0_2, N1_2, N2_2, N3_2,
SN2, DN2, EN2);
ScalarRealType beta = -( 2 * SN2 - SD * N0_2 ) / ( 2 * SN0 - SD * N0_0 );
this->m_N0 = N0_2 + beta * N0_0;
this->m_N1 = N1_2 + beta * N1_0;
this->m_N2 = N2_2 + beta * N2_0;
this->m_N3 = N3_2 + beta * N3_0;
SN = SN2 + beta * SN0;
DN = DN2 + beta * DN0;
EN = EN2 + beta * EN0;
ScalarRealType alpha2;
alpha2 = EN * SD * SD - ED * SN * SD - 2 * DN * DD * SD + 2 * DD * DD * SN;
alpha2 /= SD * SD * SD;
this->m_N0 *= across_scale_normalization / alpha2;
this->m_N1 *= across_scale_normalization / alpha2;
this->m_N2 *= across_scale_normalization / alpha2;
this->m_N3 *= across_scale_normalization / alpha2;
const bool symmetric = true;
this->ComputeRemainingCoefficients(symmetric);
break;
}
default:
{
itkExceptionMacro(<< "Unknown Order");
return;
}
}
}
/**
* Compute the N coefficients.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::ComputeNCoefficients(ScalarRealType sigmad,
ScalarRealType A1, ScalarRealType B1, ScalarRealType W1, ScalarRealType L1,
ScalarRealType A2, ScalarRealType B2, ScalarRealType W2, ScalarRealType L2,
ScalarRealType & N0, ScalarRealType & N1, ScalarRealType & N2, ScalarRealType & N3,
ScalarRealType & SN, ScalarRealType & DN, ScalarRealType & EN)
{
ScalarRealType Sin1 = std::sin(W1 / sigmad);
ScalarRealType Sin2 = std::sin(W2 / sigmad);
ScalarRealType Cos1 = std::cos(W1 / sigmad);
ScalarRealType Cos2 = std::cos(W2 / sigmad);
ScalarRealType Exp1 = std::exp(L1 / sigmad);
ScalarRealType Exp2 = std::exp(L2 / sigmad);
N0 = A1 + A2;
N1 = Exp2 * ( B2 * Sin2 - ( A2 + 2 * A1 ) * Cos2 );
N1 += Exp1 * ( B1 * Sin1 - ( A1 + 2 * A2 ) * Cos1 );
N2 = ( A1 + A2 ) * Cos2 * Cos1;
N2 -= B1 * Cos2 * Sin1 + B2 * Cos1 * Sin2;
N2 *= 2 * Exp1 * Exp2;
N2 += A2 * Exp1 * Exp1 + A1 * Exp2 * Exp2;
N3 = Exp2 * Exp1 * Exp1 * ( B2 * Sin2 - A2 * Cos2 );
N3 += Exp1 * Exp2 * Exp2 * ( B1 * Sin1 - A1 * Cos1 );
SN = N0 + N1 + N2 + N3;
DN = N1 + 2 * N2 + 3 * N3;
EN = N1 + 4 * N2 + 9 * N3;
}
/**
* Compute the D coefficients.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::ComputeDCoefficients(ScalarRealType sigmad,
ScalarRealType W1, ScalarRealType L1, ScalarRealType W2, ScalarRealType L2,
ScalarRealType & SD, ScalarRealType & DD, ScalarRealType & ED)
{
// const ScalarRealType Sin1 = std::sin(W1 / sigmad);
// const ScalarRealType Sin2 = std::sin(W2 / sigmad);
const ScalarRealType Cos1 = std::cos(W1 / sigmad);
const ScalarRealType Cos2 = std::cos(W2 / sigmad);
const ScalarRealType Exp1 = std::exp(L1 / sigmad);
const ScalarRealType Exp2 = std::exp(L2 / sigmad);
this->m_D4 = Exp1 * Exp1 * Exp2 * Exp2;
this->m_D3 = -2 * Cos1 * Exp1 * Exp2 * Exp2;
this->m_D3 += -2 * Cos2 * Exp2 * Exp1 * Exp1;
this->m_D2 = 4 * Cos2 * Cos1 * Exp1 * Exp2;
this->m_D2 += Exp1 * Exp1 + Exp2 * Exp2;
this->m_D1 = -2 * ( Exp2 * Cos2 + Exp1 * Cos1 );
SD = 1.0 + this->m_D1 + this->m_D2 + this->m_D3 + this->m_D4;
DD = this->m_D1 + 2 * this->m_D2 + 3 * this->m_D3 + 4 * this->m_D4;
ED = this->m_D1 + 4 * this->m_D2 + 9 * this->m_D3 + 16 * this->m_D4;
}
/**
* Compute the M coefficients and the boundary coefficients.
*/
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::ComputeRemainingCoefficients(bool symmetric)
{
if ( symmetric )
{
this->m_M1 = this->m_N1 - this->m_D1 * this->m_N0;
this->m_M2 = this->m_N2 - this->m_D2 * this->m_N0;
this->m_M3 = this->m_N3 - this->m_D3 * this->m_N0;
this->m_M4 = -this->m_D4 * this->m_N0;
}
else
{
this->m_M1 = -( this->m_N1 - this->m_D1 * this->m_N0 );
this->m_M2 = -( this->m_N2 - this->m_D2 * this->m_N0 );
this->m_M3 = -( this->m_N3 - this->m_D3 * this->m_N0 );
this->m_M4 = this->m_D4 * this->m_N0;
}
// Compute coefficients to be used at the boundaries
// in order to simulate edge extension boundary conditions.
const ScalarRealType SN = this->m_N0 + this->m_N1 + this->m_N2 + this->m_N3;
const ScalarRealType SM = this->m_M1 + this->m_M2 + this->m_M3 + this->m_M4;
const ScalarRealType SD = 1.0 + this->m_D1 + this->m_D2 + this->m_D3 + this->m_D4;
this->m_BN1 = this->m_D1 * SN / SD;
this->m_BN2 = this->m_D2 * SN / SD;
this->m_BN3 = this->m_D3 * SN / SD;
this->m_BN4 = this->m_D4 * SN / SD;
this->m_BM1 = this->m_D1 * SM / SD;
this->m_BM2 = this->m_D2 * SM / SD;
this->m_BM3 = this->m_D3 * SM / SD;
this->m_BM4 = this->m_D4 * SM / SD;
}
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::VerifyPreconditions()
{
this->Superclass::VerifyPreconditions();
if( this->m_Sigma <= 0.0 )
{
itkExceptionMacro( "Sigma must be greater than zero." );
}
}
template< typename TInputImage, typename TOutputImage >
void
RecursiveGaussianImageFilter< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << "Sigma: " << m_Sigma << std::endl;
os << "Order: " << m_Order << std::endl;
os << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
}
} // end namespace itk
#endif
|