1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Disable warning for long symbol names in this file only
#include <itkRecursiveGaussianImageFilter.h>
#include <itkImageRegionIterator.h>
namespace
{
bool NormalizeSineWave( double frequencyPerImage, unsigned int order, double pixelSpacing = 1.0 )
{
// for an image f(x) = sin ( w*x ), where w is a measure of
// frequency, this methods verifies that the normalized scale-scale
// is with in reasonable tolerance of the theoretical value.
const unsigned int ImageDimension = 1;
const unsigned int imageSize = 1024;
const double tol = std::pow( .000001, 1.0 / order );
double frequency = frequencyPerImage * 2.0 * itk::Math::pi / ( imageSize * pixelSpacing );
// The theoretical maximal value should occur at this sigma
double sigma_max = std::sqrt( double( order ) ) / frequency;
// the theoreical maximal value of the derivative, obtained at sigma_max
double expected_max = std::pow( double(order), order *0.5 ) * std::exp( - 0.5 * order );
typedef itk::Image< double, ImageDimension > ImageType;
ImageType::Pointer image = ImageType::New();
ImageType::SizeType size;
size.Fill( imageSize );
image->SetRegions( ImageType::RegionType( size ) );
image->Allocate();
ImageType::SpacingType spacing;
spacing.Fill( pixelSpacing );
image->SetSpacing( spacing );
itk::ImageRegionIterator< ImageType > iter( image, image->GetBufferedRegion() );
// create sine wave image
while( !iter.IsAtEnd() )
{
ImageType::PointType p;
image->TransformIndexToPhysicalPoint( iter.GetIndex(), p );
const double x = p[0];
double value = std::sin( x * frequency );
iter.Set( value );
++iter;
}
typedef itk::RecursiveGaussianImageFilter<ImageType, ImageType> GaussianFilterType;
GaussianFilterType::Pointer filter = GaussianFilterType::New();
filter->SetInput( image );
filter->SetDirection( 0 );
filter->SetSigma( sigma_max );
switch( order)
{
case 1:
filter->SetOrder( GaussianFilterType::FirstOrder );
break;
case 2:
filter->SetOrder( GaussianFilterType::SecondOrder );
break;
default:
std::cerr << " only support order 1 and 2" << std::endl;
return false;
}
filter->SetNormalizeAcrossScale( true );
// The derivative need to be scaled
//
// All .Get() methods should be multiplied by this
const double scaleFactor = std::pow( 1.0/pixelSpacing, double(order) );
ImageType::Pointer outputImage = filter->GetOutput();
outputImage->Update();
// maximal value of the first derivative
double maxLx = itk::NumericTraits<double>::NonpositiveMin();
itk::ImageRegionConstIterator< ImageType > oiter( outputImage, outputImage->GetBufferedRegion() );
while ( !oiter.IsAtEnd() )
{
maxLx = std::max( maxLx, oiter.Get()*scaleFactor );
++oiter;
}
// check if the maximal is obtained with a little bit smaller Gaussian
filter->SetSigma( sigma_max*0.95 );
outputImage->Update();
oiter.GoToBegin();
while ( !oiter.IsAtEnd() )
{
if ( maxLx < oiter.Get()*scaleFactor &&
std::abs( maxLx - oiter.Get()*scaleFactor ) > tol )
{
std::cout << "FAIL: For period: " << 1.0/frequency
<< " maxLx: " << maxLx
<< " tolerance exceeded by: " << std::abs( maxLx - oiter.Get()*scaleFactor ) << std::endl;
return false;
}
++oiter;
}
// check if the maximal is obtained with a little bit bigger Gaussian
filter->SetSigma( sigma_max*1.05 );
outputImage->Update();
oiter.GoToBegin();
while ( !oiter.IsAtEnd() )
{
if ( maxLx < oiter.Get()*scaleFactor &&
std::abs( maxLx - oiter.Get()*scaleFactor ) > tol )
{
std::cout << "FAIL: For period: " << 1.0/frequency
<< " maxLx: " << maxLx
<< " tolerance exceeded by: " << std::abs( maxLx - oiter.Get()*scaleFactor ) << std::endl;
return false;
}
++oiter;
}
std::cout << "f: " << frequencyPerImage << " max: " << maxLx << " expected max: " << expected_max << std::endl;
if ( std::abs( maxLx - expected_max ) > .01 )
{
std::cout << "FAIL: tolerance of expected max exceeded!" << std::endl;
}
return true;
}
}
int itkRecursiveGaussianScaleSpaceTest1(int, char* [] )
{
bool pass = true;
std::cout << " Testing First Order Gaussian" << std::endl;
pass &= NormalizeSineWave( 1.5, 1);
pass &= NormalizeSineWave( 2.5, 1);
pass &= NormalizeSineWave( 5, 1 );
pass &= NormalizeSineWave( 10, 1 );
pass &= NormalizeSineWave( 25, 1 );
std::cout << " Testing Second Order Gaussian" << std::endl;
pass &= NormalizeSineWave( 1.5, 2);
pass &= NormalizeSineWave( 2.5, 2);
pass &= NormalizeSineWave( 5, 2 );
pass &= NormalizeSineWave( 10, 2 );
pass &= NormalizeSineWave( 25, 2 );
std::cout << " Testing Spacing Invariance" << std::endl;
pass &= NormalizeSineWave( 5, 2, 0.01 );
pass &= NormalizeSineWave( 5, 2, 100 );
if ( !pass )
{
std::cout << "Test Failed!" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|