File: itkRecursiveGaussianScaleSpaceTest1.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (190 lines) | stat: -rw-r--r-- 5,846 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
// Disable warning for long symbol names in this file only

#include <itkRecursiveGaussianImageFilter.h>
#include <itkImageRegionIterator.h>

namespace
{

bool NormalizeSineWave( double frequencyPerImage, unsigned int order, double pixelSpacing = 1.0 )
{
  // for an image f(x) = sin ( w*x ), where w is a measure of
  // frequency, this methods verifies that the normalized scale-scale
  // is with in reasonable tolerance of the theoretical value.

  const unsigned int ImageDimension = 1;
  const unsigned int imageSize = 1024;
  const double tol = std::pow( .000001, 1.0 / order );

  double frequency = frequencyPerImage * 2.0 * itk::Math::pi / ( imageSize * pixelSpacing );

  // The theoretical maximal value should occur at this sigma
  double sigma_max = std::sqrt( double( order ) ) / frequency;

  // the theoreical maximal value of the derivative, obtained at sigma_max
  double expected_max = std::pow( double(order), order *0.5 ) * std::exp( - 0.5 * order );

  typedef itk::Image< double, ImageDimension > ImageType;
  ImageType::Pointer image = ImageType::New();

  ImageType::SizeType size;
  size.Fill( imageSize );

  image->SetRegions( ImageType::RegionType( size ) );
  image->Allocate();

  ImageType::SpacingType spacing;
  spacing.Fill( pixelSpacing );

  image->SetSpacing( spacing );

  itk::ImageRegionIterator< ImageType > iter( image, image->GetBufferedRegion() );

  // create sine wave image
  while( !iter.IsAtEnd() )
    {
    ImageType::PointType p;
    image->TransformIndexToPhysicalPoint( iter.GetIndex(), p );
    const double x = p[0];
    double value = std::sin( x * frequency );

    iter.Set( value );
    ++iter;
    }


  typedef itk::RecursiveGaussianImageFilter<ImageType, ImageType> GaussianFilterType;
  GaussianFilterType::Pointer filter = GaussianFilterType::New();
  filter->SetInput( image );
  filter->SetDirection( 0 );
  filter->SetSigma( sigma_max );
  switch( order)
    {
    case 1:
      filter->SetOrder( GaussianFilterType::FirstOrder );
      break;
    case 2:
      filter->SetOrder( GaussianFilterType::SecondOrder );
      break;
    default:
      std::cerr << " only support order 1 and 2" << std::endl;
      return false;
    }
  filter->SetNormalizeAcrossScale( true );

  // The derivative need to be scaled
  //
  // All .Get() methods should be multiplied by this
  const double scaleFactor = std::pow( 1.0/pixelSpacing, double(order) );

  ImageType::Pointer outputImage = filter->GetOutput();
  outputImage->Update();

  // maximal value of the first derivative
  double maxLx = itk::NumericTraits<double>::NonpositiveMin();

  itk::ImageRegionConstIterator< ImageType > oiter( outputImage, outputImage->GetBufferedRegion() );

  while ( !oiter.IsAtEnd() )
    {
    maxLx = std::max( maxLx, oiter.Get()*scaleFactor );
    ++oiter;
    }

  // check if the maximal is obtained with a little bit smaller Gaussian
  filter->SetSigma( sigma_max*0.95 );
  outputImage->Update();
  oiter.GoToBegin();

  while ( !oiter.IsAtEnd() )
    {
    if ( maxLx < oiter.Get()*scaleFactor &&
         std::abs( maxLx - oiter.Get()*scaleFactor ) > tol )
      {
      std::cout << "FAIL: For period: " << 1.0/frequency
                << " maxLx: " << maxLx
                << " tolerance exceeded by: " << std::abs( maxLx - oiter.Get()*scaleFactor ) << std::endl;
      return false;
      }
    ++oiter;
    }

  // check if the maximal is obtained with a little bit bigger Gaussian
  filter->SetSigma( sigma_max*1.05 );
  outputImage->Update();
  oiter.GoToBegin();

  while ( !oiter.IsAtEnd() )
    {
    if ( maxLx < oiter.Get()*scaleFactor &&
         std::abs( maxLx - oiter.Get()*scaleFactor ) > tol )
      {
      std::cout << "FAIL:  For period: " << 1.0/frequency
                << " maxLx: " << maxLx
                << " tolerance exceeded by: " << std::abs( maxLx - oiter.Get()*scaleFactor ) << std::endl;
      return false;
      }
    ++oiter;
    }


  std::cout << "f: " << frequencyPerImage << " max: " << maxLx  << " expected max: " << expected_max << std::endl;

  if (  std::abs( maxLx - expected_max ) > .01 )
    {
    std::cout << "FAIL: tolerance of expected max exceeded!" << std::endl;
    }

  return true;

}

}

int itkRecursiveGaussianScaleSpaceTest1(int, char* [] )
{
  bool pass = true;

  std::cout << " Testing First Order Gaussian" << std::endl;
  pass  &= NormalizeSineWave( 1.5, 1);
  pass  &= NormalizeSineWave( 2.5, 1);
  pass  &= NormalizeSineWave( 5, 1 );
  pass  &= NormalizeSineWave( 10, 1 );
  pass  &= NormalizeSineWave( 25, 1 );

  std::cout << " Testing Second Order Gaussian" << std::endl;
  pass  &= NormalizeSineWave( 1.5, 2);
  pass  &= NormalizeSineWave( 2.5, 2);
  pass  &= NormalizeSineWave( 5, 2 );
  pass  &= NormalizeSineWave( 10, 2 );
  pass  &= NormalizeSineWave( 25, 2 );

  std::cout << " Testing Spacing Invariance" << std::endl;
  pass  &= NormalizeSineWave( 5, 2, 0.01 );
  pass  &= NormalizeSineWave( 5, 2, 100 );

  if ( !pass )
    {
    std::cout << "Test Failed!" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}