File: itkMaximumRatioDecisionRuleTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (131 lines) | stat: -rw-r--r-- 4,076 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkMaximumRatioDecisionRule.h"
#include "itkObjectFactory.h"

int itkMaximumRatioDecisionRuleTest(int, char* [] )
{
  typedef itk::Statistics::MaximumRatioDecisionRule      MaximumRatioDecisionRuleType;

  typedef MaximumRatioDecisionRuleType::MembershipVectorType MembershipVectorType;

  MaximumRatioDecisionRuleType::Pointer decisionRule = MaximumRatioDecisionRuleType::New();

  std::cout << decisionRule->GetNameOfClass() << std::endl;
  std::cout << decisionRule->MaximumRatioDecisionRuleType::Superclass::GetNameOfClass() << std::endl;

  decisionRule->Print(std::cout);

  MembershipVectorType membershipScoreVector;

  double membershipScore1;
  membershipScore1 = 0.1;
  membershipScoreVector.push_back( membershipScore1 );

  double membershipScore2;
  membershipScore2 = 0.5;
  membershipScoreVector.push_back( membershipScore2 );

  double membershipScore3;
  membershipScore3 = 1.9;
  membershipScoreVector.push_back( membershipScore3 );

  //add discriminantscore with a value of zero
  double membershipScore4;
  membershipScore4 = 0.0;
  membershipScoreVector.push_back( membershipScore4 );


  unsigned int  decisionValue;
  try
    {
    decisionRule->Evaluate( membershipScoreVector);
    std::cerr << "An exception should have been thrown since a priori"
              << " probability is not set yet " << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception= " << excp << std::endl;
    }

  //Set aprior probablity
  typedef MaximumRatioDecisionRuleType::APrioriVectorType APrioriVectorType;
  typedef MaximumRatioDecisionRuleType::APrioriValueType  APrioriValueType;

  APrioriVectorType aprioriProbabilityVector;

  //first class
  APrioriValueType value1 = 0.4;
  aprioriProbabilityVector.push_back( value1 );

  //second class
  APrioriValueType value2 = 0.2;
  aprioriProbabilityVector.push_back( value2 );
  decisionRule->SetAPriori( aprioriProbabilityVector );

  //Evalue the membershipScore vector instantiated above ( 3 classes )
  try
    {
    decisionRule->Evaluate( membershipScoreVector);
    std::cerr << "An exception should have been thrown since the membership"
              << " score vector size doesn't match with the apriori vector" << std::endl;
    return EXIT_FAILURE;
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception= " << excp << std::endl;
    }

  APrioriVectorType aprioriProbabilityVector2;

  value1 = 0.3;
  aprioriProbabilityVector2.push_back( value1 );

  value2 = 0.3;
  aprioriProbabilityVector2.push_back( value2 );

  //Add a third and a fourth class
  APrioriValueType value3 = 0.3;
  aprioriProbabilityVector2.push_back( value3 );

  //Zero priori probability
  APrioriValueType value4 = 0.0;
  aprioriProbabilityVector2.push_back( value4 );

  decisionRule->SetAPriori( aprioriProbabilityVector2 );
  try
    {
    decisionValue = decisionRule->Evaluate( membershipScoreVector);
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception= " << excp << std::endl;
    return EXIT_FAILURE;
    }

  //Check if the computed decision value is correct
  if( decisionValue != 2 )
    {
    std::cerr << "Decision rule computation is incorrect!" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;
}