1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFEMSolverHyperbolic_hxx
#define itkFEMSolverHyperbolic_hxx
#include "itkFEMSolverHyperbolic.h"
#include "itkMath.h"
namespace itk {
namespace fem {
template <unsigned int VDimension>
SolverHyperbolic<VDimension>
::SolverHyperbolic()
{
this->InitializeLinearSystemWrapper();
this->InitializeMatrixForAssembly( 2 );
this->m_Beta=0.25;
this->m_Gamma=0.5;
this->m_TimeStep=1.0;
this->m_NumberOfIterations = 1;
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::InitializeLinearSystemWrapper(void)
{
// Set the maximum number of matrices and vectors that
// we will need to store inside.
this->m_LinearSystem->SetNumberOfMatrices(5);
this->m_LinearSystem->SetNumberOfVectors(6);
this->m_LinearSystem->SetNumberOfSolutions(3);
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::AssembleElementMatrix(Element::Pointer e)
{
// Copy the element stiffness matrix for faster access.
Element::MatrixType Ke;
e->GetStiffnessMatrix(Ke);
Element::MatrixType Me;
e->GetMassMatrix(Me);
// ... same for number of DOF
int Ne=e->GetNumberOfDegreesOfFreedom();
// Step over all rows in element matrix
for(int j=0; j<Ne; j++)
{
// Step over all columns in element matrix
for(int k=0; k<Ne; k++)
{
// error checking. all GFN should be =>0 and <NGFN
if ( e->GetDegreeOfFreedom(j) >= this->GetInput()->GetNumberOfDegreesOfFreedom() ||
e->GetDegreeOfFreedom(k) >= this->GetInput()->GetNumberOfDegreesOfFreedom() )
{
throw FEMExceptionSolution(__FILE__,__LINE__,"Solver::AssembleElementMatrix()","Illegal GFN!");
}
//
// Here we finally update the corresponding element
// in the master stiffness matrix. We first check if
// element in Ke is zero, to prevent zeros from being
// allocated in sparse matrix.
//
if ( Math::NotExactlyEquals(Ke[j][k],Float(0.0)) )
{
this->m_LinearSystem->AddMatrixValue( e->GetDegreeOfFreedom(j), e->GetDegreeOfFreedom(k), Ke[j][k], matrix_K );
}
if ( Math::NotExactlyEquals(Me[j][k],Float(0.0)) )
{
this->m_LinearSystem->AddMatrixValue( e->GetDegreeOfFreedom(j), e->GetDegreeOfFreedom(k), Me[j][k], matrix_M );
}
}
}
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::InitializeMatrixForAssembly(unsigned int N)
{
this->m_LinearSystem->SetSystemOrder(N);
this->m_LinearSystem->InitializeMatrix();
this->m_LinearSystem->InitializeMatrix(matrix_K);
this->m_LinearSystem->InitializeMatrix(matrix_M);
this->m_LinearSystem->InitializeMatrix(matrix_C);
for(unsigned int i=0; i<N; i++)
{
this->m_LinearSystem->SetMatrixValue(i,i,1.0,matrix_C);
}
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::FinalizeMatrixAfterAssembly( void )
{
// Apply the boundary conditions to the matrix
// FIXME: this doesn't work in general
this->ApplyBC(0,matrix_M);
this->ApplyBC(0,matrix_K);
// Calculate initial values of vector_a
// M*a0=F - C*v0 - K*d0
// FIXME: take into account the d0 and v0.
this->m_LinearSystem->InitializeSolution(0);
this->m_LinearSystem->InitializeSolution(solution_a);
this->m_LinearSystem->CopyMatrix(matrix_M,0);
this->AssembleF();
this->m_LinearSystem->Solve();
this->m_LinearSystem->InitializeVector(vector_tmp);
this->m_LinearSystem->CopySolution2Vector(0,vector_tmp);
this->m_LinearSystem->InitializeSolution(solution_a);
this->m_LinearSystem->CopyVector2Solution(vector_tmp,solution_a);
this->m_LinearSystem->DestroyVector(vector_tmp);
this->m_LinearSystem->InitializeSolution(solution_d);
this->m_LinearSystem->InitializeSolution(solution_v);
// Compose the lhs of system of lin. eq.
this->m_LinearSystem->InitializeMatrix(matrix_tmp);
this->m_LinearSystem->CopyMatrix(matrix_C,matrix_tmp);
this->m_LinearSystem->ScaleMatrix(this->m_Gamma*this->m_TimeStep, matrix_tmp);
this->m_LinearSystem->AddMatrixMatrix(0,matrix_tmp);
this->m_LinearSystem->CopyMatrix(matrix_K,matrix_tmp);
this->m_LinearSystem->ScaleMatrix(this->m_Beta*this->m_TimeStep*this->m_TimeStep, matrix_tmp);
this->m_LinearSystem->AddMatrixMatrix(0,matrix_tmp);
this->m_LinearSystem->DestroyMatrix(matrix_tmp);
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::Solve()
{
this->m_LinearSystem->InitializeVector(vector_tmp);
this->m_LinearSystem->InitializeVector(vector_dhat);
this->m_LinearSystem->InitializeVector(vector_vhat);
this->m_LinearSystem->InitializeVector(vector_ahat);
// We're using the Newmark method to obtain the solution
// Assume that vectors solution_a solution_v and solution_d contain
// solutions obtained at the previous time step.
// Calculate the predictors
for(unsigned int i=0; i<this->m_LinearSystem->GetSystemOrder(); i++)
{
Float d0=this->m_LinearSystem->GetSolutionValue(i,solution_d);
Float v0=this->m_LinearSystem->GetSolutionValue(i,solution_v);
Float a0=this->m_LinearSystem->GetSolutionValue(i,solution_a);
this->m_LinearSystem->SetVectorValue( i, -(d0+this->m_TimeStep*v0+0.5*this->m_TimeStep*this->m_TimeStep*(1.0-2.0*this->m_Beta)*a0), vector_dhat);
this->m_LinearSystem->SetVectorValue( i, -(v0+this->m_TimeStep*(1.0-this->m_Gamma)*a0), vector_vhat);
}
// Calculate the rhs of master equation
this->m_LinearSystem->MultiplyMatrixVector(vector_tmp,matrix_C,vector_vhat);
this->m_LinearSystem->AddVectorVector(0,vector_tmp);
this->m_LinearSystem->MultiplyMatrixVector(vector_tmp,matrix_K,vector_dhat);
this->m_LinearSystem->AddVectorVector(0,vector_tmp);
// Solve the system of linear equations for accelerations
this->m_LinearSystem->Solve();
// move the solution for a to the correct vector
this->m_LinearSystem->CopySolution2Vector(0,vector_tmp);
this->m_LinearSystem->CopyVector2Solution(vector_tmp,solution_a);
// Calculate displacements and velocities
for(unsigned int i=0; i<this->m_LinearSystem->GetSystemOrder(); i++)
{
Float dhat=-this->m_LinearSystem->GetVectorValue(i,vector_dhat);
Float vhat=-this->m_LinearSystem->GetVectorValue(i,vector_vhat);
Float a1=this->m_LinearSystem->GetSolutionValue(i,solution_a);
this->m_LinearSystem->SetSolutionValue(i, dhat +
this->m_Beta*this->m_TimeStep*this->m_TimeStep*a1
, solution_d);
this->m_LinearSystem->SetSolutionValue(i, vhat +
this->m_Gamma*this->m_TimeStep*a1
, solution_v);
}
this->m_LinearSystem->DestroyVector(vector_tmp);
this->m_LinearSystem->DestroyVector(vector_dhat);
this->m_LinearSystem->DestroyVector(vector_vhat);
this->m_LinearSystem->DestroyVector(vector_ahat);
}
// ----------------------------------------------------------------------------
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::GenerateData()
{
// Call Solver
this->RunSolver();
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::RunSolver()
{
this->AssembleK(); // Assemble the global stiffness matrix K
this->DecomposeK(); // Invert K
for (unsigned int nit = 0; nit < m_NumberOfIterations; nit++)
{
this->AssembleF();
this->Solve();
}
}
template <unsigned int VDimension>
void
SolverHyperbolic<VDimension>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf( os, indent );
os << indent << "Number Of Iterations: " << this->m_NumberOfIterations << std::endl;
os << indent << "Time Step: " << this->m_TimeStep << std::endl;
os << indent << "Beta: " << this->m_Beta << std::endl;
os << indent << "Gamma: " << this->m_Gamma << std::endl;
}
} // end namespace fem
} // end namespace itk
#endif // itkFEMSolverHyperbolic_hxx
|