1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkFEMSolver.h"
#include "itkFEMSpatialObjectWriter.h"
#include "itkFEMElement2DC0LinearQuadrilateralStress.h"
int itkFEMElement2DC0LinearQuadrilateralStressTest(int argc, char *argv[])
{
if(argc < 1)
{
std::cerr << "Missing Spatial Object Filename" << std::endl;
return EXIT_FAILURE;
}
itk::FEMFactoryBase::RegisterDefaultTypes();
const unsigned int Dimension = 2;
typedef itk::fem::Solver<Dimension> Solver2DType;
Solver2DType::Pointer solver = Solver2DType::New();
typedef itk::fem::FEMObject<Dimension> FEMObjectType;
FEMObjectType::Pointer femObject = FEMObjectType::New();
typedef itk::fem::Element::Node NodeType;
NodeType::Pointer n1;
n1 = NodeType::New();
itk::fem::Element::VectorType pt(Dimension);
pt[0] = 2.0;
pt[1] = 2.0;
n1->SetCoordinates(pt);
femObject->AddNextNode(n1);
n1 = NodeType::New();
pt[0] = 8.0;
pt[1] = 3.0;
n1->SetCoordinates(pt);
femObject->AddNextNode(n1);
n1 = NodeType::New();
pt[0] = 8.0;
pt[1] = 6.0;
n1->SetCoordinates(pt);
femObject->AddNextNode(n1);
n1 = NodeType::New();
pt[0] = 2.0;
pt[1] = 9.0;
n1->SetCoordinates(pt);
femObject->AddNextNode(n1);
femObject->RenumberNodeContainer();
itk::fem::MaterialLinearElasticity::Pointer m;
m = itk::fem::MaterialLinearElasticity::New();
m->SetGlobalNumber(0); /* Global number of the material */
m->SetYoungsModulus(30000000.0); /* Young modulus */
m->SetPoissonsRatio(0.3);
m->SetCrossSectionalArea(.0); /* Crossection area */
m->SetMomentOfInertia(1.0); /* Momemt of inertia */
femObject->AddNextMaterial(m);
itk::fem::Element2DC0LinearQuadrilateralStress::Pointer e1;
e1 = itk::fem::Element2DC0LinearQuadrilateralStress::New();
e1->SetGlobalNumber(0);
e1->SetNode( 0, femObject->GetNode(0) );
e1->SetNode( 1, femObject->GetNode(1) );
e1->SetNode( 2, femObject->GetNode(2) );
e1->SetNode( 3, femObject->GetNode(3) );
e1->SetMaterial( femObject->GetMaterial(0) );
femObject->AddNextElement( e1.GetPointer() );
itk::fem::LoadBC::Pointer l1;
l1 = itk::fem::LoadBC::New();
l1->SetGlobalNumber(0);
l1->SetElement( femObject->GetElement(0) );
l1->SetDegreeOfFreedom(0);
l1->SetValue( vnl_vector<double>(1, 0.0) );
femObject->AddNextLoad( l1 );
l1 = itk::fem::LoadBC::New();
l1->SetGlobalNumber(1);
l1->SetElement( femObject->GetElement(0) );
l1->SetDegreeOfFreedom(1);
l1->SetValue( vnl_vector<double>(1, 0.0) );
femObject->AddNextLoad( l1 );
l1 = itk::fem::LoadBC::New();
l1->SetGlobalNumber(2);
l1->SetElement( femObject->GetElement(0) );
l1->SetDegreeOfFreedom(6);
l1->SetValue( vnl_vector<double>(1, 0.0) );
femObject->AddNextLoad( l1 );
l1 = itk::fem::LoadBC::New();
l1->SetGlobalNumber(3);
l1->SetElement( femObject->GetElement(0) );
l1->SetDegreeOfFreedom(7);
l1->SetValue( vnl_vector<double>(1, 0.0) );
femObject->AddNextLoad( l1 );
itk::fem::LoadNode::Pointer l2;
l2 = itk::fem::LoadNode::New();
l2->SetGlobalNumber(4);
l2->SetElement( femObject->GetElement(0) );
l2->SetNode(1);
vnl_vector<double> F(Dimension);
F[0] = 5;
F[1] = 0;
l2->SetForce(F);
femObject->AddNextLoad( l2 );
l2 = itk::fem::LoadNode::New();
l2->SetGlobalNumber(5);
l2->SetElement( femObject->GetElement(0) );
l2->SetNode(2);
vnl_vector<double> F1(Dimension);
F1[0] = 10;
F1[1] = 0;
l2->SetForce(F1);
femObject->AddNextLoad( l2 );
femObject->FinalizeMesh();
solver->SetInput( femObject );
solver->Update();
// to write the deformed mesh
// Testing the fe mesh validity
typedef itk::FEMObjectSpatialObject<Dimension> FEMObjectSpatialObjectType;
FEMObjectSpatialObjectType::Pointer femSODef = FEMObjectSpatialObjectType::New();
femSODef->SetFEMObject(solver->GetOutput() );
typedef itk::FEMSpatialObjectWriter<Dimension> FEMSpatialObjectWriterType;
typedef FEMSpatialObjectWriterType::Pointer FEMSpatialObjectWriterPointer;
FEMSpatialObjectWriterPointer SpatialWriter = FEMSpatialObjectWriterType::New();
SpatialWriter->SetInput(femSODef);
SpatialWriter->SetFileName( argv[1] );
SpatialWriter->Update();
std::cout << "Test PASSED!" << std::endl;
return EXIT_SUCCESS;
}
|