File: itkFEMElement2DC0LinearQuadrilateralStressTestFEMObject.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (145 lines) | stat: -rw-r--r-- 4,404 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include "itkFEMElementBase.h"
#include "itkFEMObject.h"

#include <iostream>

//  Example taken from 'Fundamentals of the Finite ELement Method' - Grandin
int itkFEMElement2DC0LinearQuadrilateralStressTestFEMObject(int argc, char *argv[])
{
  //Need to register default FEM object types,
  //and setup SpatialReader to recognize FEM types
  //which is all currently done as a HACK in
  //the initializaiton of the itk::FEMFactoryBase::GetFactory()
  itk::FEMFactoryBase::GetFactory()->RegisterDefaultTypes();

  typedef itk::fem::FEMObject<2> FEMObjectType;
  FEMObjectType::Pointer femObject = FEMObjectType::New();

  itk::fem::Node::Pointer n1;

  n1 = itk::fem::Node::New();
  itk::fem::Element::VectorType pt(2);

  pt[0] = 2.0;
  pt[1] = 2.0;
  n1->SetCoordinates(pt);

  femObject->AddNextNode(n1.GetPointer());

  n1 = itk::fem::Node::New();
  pt[0] = 8.0;
  pt[1] = 3.0;
  n1->SetCoordinates(pt);
  femObject->AddNextNode(n1.GetPointer());

  n1 = itk::fem::Node::New();
  pt[0] = 8.0;
  pt[1] = 6.0;
  n1->SetCoordinates(pt);
  femObject->AddNextNode(n1.GetPointer());

  n1 = itk::fem::Node::New();
  pt[0] = 2.0;
  pt[1] = 9.0;
  n1->SetCoordinates(pt);
  femObject->AddNextNode(n1.GetPointer());

  femObject->RenumberNodeContainer();

  itk::fem::MaterialLinearElasticity::Pointer m;
  m = itk::fem::MaterialLinearElasticity::New();
  m->SetGlobalNumber(0);           /* Global number of the material */
  m->SetYoungsModulus(30000000.0); /* Young modulus */
  m->SetPoissonsRatio(0.3);
  m->SetCrossSectionalArea(.0);   /* Crossection area */
  m->SetMomentOfInterita(1.0);    /* Momemt of inertia */
  femObject->AddNextMaterial(m.GetPointer());

  itk::fem::Element2DC0LinearQuadrilateralStress::Pointer e1;

  e1 = itk::fem::Element2DC0LinearQuadrilateralStress::New();

  e1->SetGlobalNumber(0);
  e1->SetNode( 0, femObject->GetNode(0).GetPointer() );
  e1->SetNode( 1, femObject->GetNode(1).GetPointer() );
  e1->SetNode( 2, femObject->GetNode(2).GetPointer() );
  e1->SetNode( 3, femObject->GetNode(3).GetPointer() );

  e1->SetMaterial( femObject->GetMaterial(0).GetPointer() );
  femObject->AddNextElement( e1.GetPointer());

  itk::fem::LoadBC::Pointer l1;
  l1 = itk::fem::LoadBC::New();
  l1->SetElement( femObject->GetElement(0) )
  l1->SetDegreeOfFreedom(0);
  l1->SetValue( vnl_vector<double>(0, 0.0) );
  femObject->AddNextLoad( l1 );

  l1 = itk::fem::LoadBC::New();
  l1->SetElement( femObject->GetElement(0) )
  l1->SetDegreeOfFreedom(1);
  l1->SetValue( vnl_vector<double>(1, 0.0) );
  femObject->AddNextLoad( l1 );

  l1 = itk::fem::LoadBC::New();
  l1->SetElement( femObject->GetElement(0) );
  l1->SetDegreeOfFreedom(6);
  l1->SetValue( vnl_vector<double>(1, 0.0) );
  femObject->AddNextLoad( l1 );

  l1 = itk::fem::LoadBC::New();
  l1->SetElement( femObject->GetElement(0) );
  l1->SetDegreeOfFreedom(7);
  l1->SetValue( vnl_vector<double>(1, 0.0) );
  femObject->AddNextLoad( l1 );

  itk::fem::LoadNode::Pointer l2;

  l2 = itk::fem::LoadNode::New();
  l2->SetElement( femObject->GetElement(0) );
  l2->SetNode(1);
  vnl_vector<double> F(2);
  F[0] = 5;
  F[1] = 0;
  l2->SetForce(F);
  femObject->AddNextLoad( l2 );

  l2 = itk::fem::LoadNode::New();
  l2->SetElement( femObject->GetElement(0) );
  l2->SetNode(2);
  vnl_vector<double> F1(2);
  F1[0] = 10;
  F1[1] = 0;
  l2->SetForce(F1);
  femObject->AddNextLoad( l2 );

  femObject->Solve();

  float soln[8];
  for( int i = 0; i < 8; i++ )
    {
    soln[i] = femObject->GetSolution(i);
    std::cout << "Solution[" << i << "]:" << soln[i] << std::endl;
    }
  std::cout << "Test PASSED!" << std::endl;
  return EXIT_SUCCESS;
}