File: itkNarrowBandImageFilterBase.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (379 lines) | stat: -rw-r--r-- 12,645 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkNarrowBandImageFilterBase_hxx
#define itkNarrowBandImageFilterBase_hxx

#include "itkNarrowBandImageFilterBase.h"
#include "itkShiftScaleImageFilter.h"

namespace itk
{
template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::ClearNarrowBand()
{
  m_NarrowBand->Clear();
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::CopyInputToOutput()
{
  //   First need to subtract the iso-surface value from the input image.
  typedef ShiftScaleImageFilter< InputImageType, OutputImageType > ShiftScaleFilterType;
  typename ShiftScaleFilterType::Pointer shiftScaleFilter = ShiftScaleFilterType::New();
  shiftScaleFilter->SetInput( this->GetInput() );
  shiftScaleFilter->SetShift(-m_IsoSurfaceValue);
  shiftScaleFilter->Update();
  this->GraftOutput( shiftScaleFilter->GetOutput() );
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::GenerateData()
{
  const int NumberOfThreads = this->GetNumberOfThreads();

  // if it is not initialized
  if ( !this->m_IsInitialized )
    {
    // Allocate the output image
    typename TOutputImage::Pointer output = this->GetOutput();
    output->SetBufferedRegion( output->GetRequestedRegion() );
    output->Allocate();

    //Set the number of threads before any other initialization happens
    this->GetMultiThreader()->SetNumberOfThreads( NumberOfThreads );

    // Copy the input image to the output image.  Algorithms will operate
    // directly on the output image and the update buffer.
    this->CopyInputToOutput();

    // Perform any other necessary pre-iteration initialization.
    this->Initialize();

    // Allocate the internal update buffer.  This takes place entirely within
    // the subclass, since this class cannot define an update buffer type.
    this->AllocateUpdateBuffer();

    // Iterative algorithm
    this->SetElapsedIterations (0);

    this->m_IsInitialized = true;
    }

  //Swapn threads
  NarrowBandImageFilterBaseThreadStruct str;
  str.Filter = this;

  // Initialize the list of time step values that will be generated by the
  // various threads.  There is one distinct slot for each possible thread,
  // so this data structure is thread-safe.
  str.TimeStepList.clear();
  str.TimeStepList.resize( NumberOfThreads, NumericTraits< TimeStepType >::ZeroValue() );

  str.ValidTimeStepList.clear();
  str.ValidTimeStepList.resize( NumberOfThreads, true );

  // Multithread the execution
  this->GetMultiThreader()->SetSingleMethod(this->IterateThreaderCallback, &str);

  // It is this method that will results in the creation of the threads
  this->GetMultiThreader()->SingleMethodExecute ();

  if ( !this->GetManualReinitialization() )
    {
    // Reset the state once execution is completed
    this->m_IsInitialized = false;
    }

  // Any further processing of the solution can be done here.
  this->PostProcessOutput();
}

template< typename TInputImage, typename TOutputImage >
ITK_THREAD_RETURN_TYPE
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::IterateThreaderCallback(void *arg)
{
  ThreadIdType threadId = ( (MultiThreader::ThreadInfoStruct *)( arg ) )->ThreadID;

  NarrowBandImageFilterBaseThreadStruct *str =
    (NarrowBandImageFilterBaseThreadStruct *)
    ( ( (MultiThreader::ThreadInfoStruct *)( arg ) )->UserData );

  str->Filter->ThreadedIterate(arg, threadId);

  return ITK_THREAD_RETURN_VALUE;
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::ThreadedIterate(void *arg, ThreadIdType threadId)
{
  ThreadRegionType splitRegion;

  //Implement iterative loop in thread function
  //ThreadedApplyUpdate and ThreadedCalculateChanged
  // is called instead of ApplyUpdate and CalculateChange
  NarrowBandImageFilterBaseThreadStruct *str =
    (NarrowBandImageFilterBaseThreadStruct *)
    ( ( (MultiThreader::ThreadInfoStruct *)( arg ) )->UserData );

  IdentifierType iter = 0;
  while ( !( this->ThreadedHalt(arg) ) )
    {
    if ( threadId == 0 )
      {
      this->InitializeIteration(); // An optional method for precalculating
                                   // global values, or otherwise setting up
                                   // for the next iteration
      }

    this->WaitForAll();

    //Update region to process for current thread
    // Execute the actual method with appropriate output region
    // first find out how many pieces extent can be split into.
    // Use GetSplitRegion to access partition previously computed by
    // the SplitRegions function in the itkNarrowBand class.

    this->GetSplitRegion(threadId, splitRegion);

    //Threaded Calculate Change
    str->ValidTimeStepList[threadId] = false;

    str->TimeStepList[threadId] =
      this->ThreadedCalculateChange(splitRegion, threadId);

    str->ValidTimeStepList[threadId] = true;

    this->WaitForAll();

    //Calculate the time step
    //Check how is done in itkParallell
    if ( threadId == 0 )
      {
      str->TimeStep = this->ResolveTimeStep(str->TimeStepList,
                                            str->ValidTimeStepList );
      }

    this->WaitForAll();

    //Threaded Apply Update
    this->ThreadedApplyUpdate(str->TimeStep, splitRegion, threadId);

    //Reset ValidTimeStepList
    str->ValidTimeStepList[threadId] = false;

    this->WaitForAll();

    //Do this. Problems accesing data members.
    ++iter;
    if ( threadId == 0 )
      {
      ++m_Step;
      this->SetElapsedIterations (iter);

      // Invoke the iteration event.
      this->InvokeEvent( IterationEvent() );
      this->InvokeEvent( ProgressEvent() );
      if ( this->GetAbortGenerateData() )
        {
        this->InvokeEvent( IterationEvent() );
        this->WaitForAll();
        this->ResetPipeline();
        ProcessAborted e(__FILE__, __LINE__);
        e.SetDescription("Process aborted.");
        e.SetLocation(ITK_LOCATION);
        throw e;
        }
      }
    this->WaitForAll();
    }
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::Initialize()
{
  m_Step = 0;

  ClearNarrowBand();
  CreateNarrowBand();

  // SetNarrowBand is expected to be defined in a subclass.
  // It should use the InsertNarrowBandNode function, which takes care of
  // memory management issues, to create the desired narrow band.

  m_RegionList = m_NarrowBand->SplitBand( this->GetMultiThreader()->GetNumberOfThreads() );

  // The narrow band is split into multi-threading regions once here for
  // computationally efficiency. Later GetSplitRegions is used to access these
  // partitions. This assumes that the band will not be changed until another
  // call to Initialize(). Any reinitialization function also must call the
  // SplitRegions function.

  // Allocation of flag variable to check if a given thread touch the outer part
  // of the narrowband. If this part is touched, band should be reinitialized.
  m_TouchedForThread.resize( this->GetMultiThreader()->GetNumberOfThreads(), false );

  // A global barrier for all threads.
  m_Barrier->Initialize( this->GetMultiThreader()->GetNumberOfThreads() );
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::InitializeIteration()
{
  //Set m_Touched flag from threads information
  for ( ThreadIdType i = 0; i < this->GetMultiThreader()->GetNumberOfThreads(); i++ )
    {
    m_Touched = ( m_Touched || m_TouchedForThread[i] );
    m_TouchedForThread[i] = false;
    }
  //Check if we have to reinitialize the narrowband
  if ( m_Touched || ( ( this->GetElapsedIterations() > 0 )
                      && ( this->m_Step == m_ReinitializationFrequency ) ) )
    {
    //Reinitialize the narrowband properly
    CreateNarrowBand();

    // Rebuild the narrow band splits used in multithreading
    m_RegionList = m_NarrowBand->SplitBand( this->GetMultiThreader()->GetNumberOfThreads() );

    m_Step = 0;
    m_Touched = false;
    }
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::ThreadedApplyUpdate(const TimeStepType& dt,
                      const ThreadRegionType & regionToProcess,
                      ThreadIdType threadId)
{
  //const int INNER_MASK = 2;
  const signed char INNER_MASK = 2;

  typename NarrowBandType::ConstIterator it;
  typename OutputImageType::Pointer image = this->GetOutput();
  typename OutputImageType::PixelType oldvalue;
  typename OutputImageType::PixelType newvalue;
  for ( it = regionToProcess.first; it != regionToProcess.last; ++it )
    {
    oldvalue = image->GetPixel(it->m_Index);
    newvalue = oldvalue + dt * it->m_Data;
    //Check whether solution is out the inner band or not
    m_TouchedForThread[threadId] =
        ( m_TouchedForThread[threadId]
          || ( !( it->m_NodeState & INNER_MASK )
               && ( ( oldvalue > 0 ) != ( newvalue > 0 ) ) ) );
    image->SetPixel(it->m_Index, newvalue);
    }
}

template< typename TInputImage, typename TOutputImage >
typename
NarrowBandImageFilterBase< TInputImage, TOutputImage >::TimeStepType
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::ThreadedCalculateChange( const ThreadRegionType & regionToProcess,
                           ThreadIdType itkNotUsed(threadId) )
{
  typedef typename OutputImageType::SizeType OutputSizeType;

  typedef typename FiniteDifferenceFunctionType::NeighborhoodType
  NeighborhoodIteratorType;

  typename OutputImageType::Pointer output = this->GetOutput();
  TimeStepType timeStep;
  void *       globalData;

  // Get the FiniteDifferenceFunction to use in calculations.
  const typename FiniteDifferenceFunctionType::Pointer df =
    this->GetDifferenceFunction();
  const OutputSizeType radius = df->GetRadius();

  // Ask the function object for a pointer to a data structure it will use to
  // manage any global values it needs.  We'll pass this back to the function
  // object at each calculation so that the function object can use it to
  // determine a time step for this iteration.
  globalData = df->GetGlobalDataPointer();

  typename NarrowBandType::Iterator bandIt;
  NeighborhoodIteratorType outputIt( radius, output, output->GetRequestedRegion() );

  for ( bandIt = regionToProcess.first; bandIt != regionToProcess.last; ++bandIt )
    {
    outputIt.SetLocation(bandIt->m_Index);
    bandIt->m_Data = df->ComputeUpdate(outputIt, globalData);
    }

  // Ask the finite difference function to compute the time step for
  // this iteration.  We give it the global data pointer to use, then
  // ask it to free the global data memory.
  timeStep = df->ComputeGlobalTimeStep(globalData);
  df->ReleaseGlobalDataPointer(globalData);

  return timeStep;
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::PostProcessOutput()
{
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::GetSplitRegion(const size_t& i, ThreadRegionType & splitRegion)
{
  splitRegion.first = m_RegionList[i].Begin;
  splitRegion.last = m_RegionList[i].End;
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::WaitForAll()
{
  m_Barrier->Wait();
}

template< typename TInputImage, typename TOutputImage >
void
NarrowBandImageFilterBase< TInputImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "IsoSurfaceValue: "
     << static_cast< typename NumericTraits< ValueType >::PrintType >( m_IsoSurfaceValue )
     << std::endl;
}
} // end namespace itk

#endif