1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkListSample.h"
#include <fstream>
#define ROUND(x) (floor(x+0.5))
int
NNetClassifierTest3(int argc, char* argv[])
{
if (argc < 3)
{
std::cout << "Usage: " << argv[0]
<< " InputTrainingFile(.txt) InputTestFile(.txt)" << std::endl;
return EXIT_FAILURE;
}
int num_train=800;
int num_test=200;
char* trainFileName =argv[1];
char* testFileName = argv[2];
const int num_input_nodes = 2;
const int num_hidden_nodes = 2;
const int num_output_nodes = 1;
typedef itk::Vector<double, num_input_nodes> MeasurementVectorType;
typedef itk::Vector<double, num_output_nodes> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double>
TrainingFcnType;
MeasurementVectorType mv;
TargetVectorType tv;
TargetVectorType ov;
ov.Fill(0.0);
SampleType::Pointer trainsample = SampleType::New();
SampleType::Pointer testsample = SampleType::New();
TargetType::Pointer traintargets = TargetType::New();
TargetType::Pointer testtargets = TargetType::New();
trainsample->SetMeasurementVectorSize( num_input_nodes);
traintargets->SetMeasurementVectorSize( num_output_nodes);
testsample->SetMeasurementVectorSize( num_input_nodes);
testtargets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(trainFileName, std::ios::in);
if (infile1.fail())
{
std::cout << argv[0] << " Cannot open training file for reading: "
<< trainFileName << std::endl;
return EXIT_FAILURE;
}
for (int a = 0; a < num_train; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile1 >> mv[i];
}
infile1 >> tv[0];
trainsample->PushBack(mv);
traintargets->PushBack(tv);
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
}
infile1.close();
std::ifstream infile2;
infile2.open(testFileName, std::ios::in);
if (infile2.fail())
{
std::cout << argv[0] << " Cannot open test file for reading: "
<< testFileName << std::endl;
return EXIT_FAILURE;
}
for (int a = 0; a < num_test; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile2 >> mv[i];
}
infile2 >> tv[0];
testsample->PushBack(mv);
testtargets->PushBack(tv);
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
}
infile2.close();
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer net1 = OneHiddenLayerBackPropagationNeuralNetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
net1->Initialize();
net1->InitializeWeights();
net1->SetLearningRate(0.01);
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(20000);
trainingfcn->SetThreshold(0.0001);
trainingfcn->Train(net1, trainsample, traintargets);
//Network Simulation
std::cout << testsample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
SampleType::ConstIterator iter1 = testsample->Begin();
TargetType::ConstIterator iter2 = testtargets->Begin();
unsigned int error1 = 0;
unsigned int error2 = 0;
int flag;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
while (iter1 != testsample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov.SetVnlVector(net1->GenerateOutput(mv));
flag = 0;
if (std::fabs(tv[0]-ov[0])>0.2)
{
flag = 1;
}
if (flag == 1 && ROUND(tv[0]) == 1)
{
++error1;
}
else if (flag == 1 && ROUND(tv[0]) == -1)
{
++error2;
}
outfile<<mv[0]<<" "<<mv[1]<<" "<<tv[0]<<" "<<ov[0]<<std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among "<<num_test<<" measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl;
std::cout<<"Network Weights and Biases after Training= "<<std::endl;
std::cout << net1 << std::endl;
if (double(error1 / 10) > 2 || double(error2 / 10) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|