1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkSymmetricSigmoidTransferFunction.h"
#include "itkBatchSupervisedTrainingFunction.h"
#include "itkListSample.h"
#include "itkMath.h"
#include <fstream>
#define ROUND(x) (floor(x+0.5))
int
QPropXORTest1(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0]
<< " InputFile(.txt)" << std::endl;
return EXIT_FAILURE;
}
char* dataFileName =argv[1]; //"qpropxortest.txt";
int num_input_nodes = 2;
int num_hidden_nodes = 2;
int num_output_nodes = 1;
srand(time(ITK_NULLPTR));
typedef itk::Array<double> MeasurementVectorType;
typedef itk::Array<double> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::BatchSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
MeasurementVectorType mv(num_input_nodes);
TargetVectorType tv(num_output_nodes);
SampleType::Pointer sample = SampleType::New();
TargetType::Pointer targets = TargetType::New();
sample->SetMeasurementVectorSize( num_input_nodes);
targets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(dataFileName, std::ios::in);
if (infile1.fail())
{
std::cout << argv[0] << " Cannot open file for reading: "
<< dataFileName << std::endl;
return EXIT_FAILURE;
}
infile1 >> mv[0] >> mv[1] >> tv[0];
while (!infile1.eof())
{
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
sample->PushBack(mv);
targets->PushBack(tv);
infile1 >> mv[0] >> mv[1] >> tv[0];
}
infile1.close();
std::cout << sample->Size() << std::endl;
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork
<MeasurementVectorType, TargetVectorType> NetworkType;
NetworkType::Pointer net1 = NetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
typedef itk::Statistics::SymmetricSigmoidTransferFunction<double> tfType;
tfType::Pointer transferfunction1=tfType::New();
net1->SetFirstHiddenTransferFunction(transferfunction1);
net1->SetOutputTransferFunction(transferfunction1);
typedef itk::Statistics::QuickPropLearningRule<NetworkType::LayerInterfaceType, TargetVectorType> QuickPropLearningRuleType;
QuickPropLearningRuleType::Pointer learningfunction=QuickPropLearningRuleType::New();
net1->SetLearningFunction(learningfunction);
net1->SetFirstHiddenLayerBias(1.0);
net1->SetOutputLayerBias(1.0);
net1->Initialize();
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(50);
trainingfcn->SetThreshold(0.001);
//Network Simulation
std::cout << sample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
TargetVectorType ov(num_output_nodes);
SampleType::ConstIterator iter1 = sample->Begin();
TargetType::ConstIterator iter2 = targets->Begin();
unsigned int error1 = 0;
unsigned int error2 = 0;
int flag;
int train_flag=1;
long num_iterations =0;
long max_iterations=1000;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
if (outfile.fail())
{
std::cout << argv[0] << " Cannot open file for wriing: "
<< "out1.txt" << std::endl;
return EXIT_FAILURE;
}
while (train_flag==1)
{
//train the network
net1->InitializeWeights();
trainingfcn->Train(net1, sample, targets);
num_iterations += 50;
iter1 = sample->Begin();
iter2 = targets->Begin();
error1=0;
error2=0;
//Simulate the network
while (iter1 != sample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov=net1->GenerateOutput(mv);
outfile<<mv[0]<<" "<<mv[1]<<" "<<tv[0]<<" "<<ov[0]<<std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
flag = 0;
std::cout<<std::fabs(tv[0]-ov[0])<<std::endl;
if (std::fabs(tv[0]-ov[0])>0.2)
{
flag = 1;
}
if (flag == 1 && itk::Math::AlmostEquals(tv[0], 0.5) )
{
++error1;
}
else if (flag == 1 && itk::Math::AlmostEquals(tv[0], -0.5) )
{
++error2;
}
++iter1;
++iter2;
}
//check for convergence
if((error1+error2) == 0 || num_iterations > max_iterations)
{//Done training
train_flag=0;
}
}//outer while
std::cout<<"Number of Epochs = "<<num_iterations<<std::endl;
std::cout << "Among 4 measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl;
std::cout<<"Network Weights and Biases after Training= "<<std::endl;
std::cout << net1 << std::endl;
if ((error1 + error2) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|