1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkRBFNetwork.h"
#include "itkListSample.h"
#include <fstream>
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkRBFBackPropagationLearningFunction.h"
#define ROUND(x) (floor(x+0.5))
int
RBFTest1(int argc, char* argv[])
{
if (argc < 3)
{
std::cout << "Usage: " << argv[0]
<< " InputTrainingFile(.txt) InputTestFile(.txt)" << std::endl;
return EXIT_FAILURE;
}
int num_input_nodes = 3;
int num_hidden_nodes = 2; // 2 2 radial basis functions
int num_output_nodes = 2;
typedef itk::Array<double> MeasurementVectorType;
typedef itk::Array<double> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::EuclideanDistanceMetric<MeasurementVectorType> DistanceMetricType;
int num_train=1000;
int num_test=200;
MeasurementVectorType mv(num_input_nodes);
TargetVectorType tv(num_output_nodes);
TargetVectorType ov(num_output_nodes);
SampleType::Pointer trainsample = SampleType::New();
SampleType::Pointer testsample = SampleType::New();
TargetType::Pointer traintargets = TargetType::New();
TargetType::Pointer testtargets = TargetType::New();
trainsample->SetMeasurementVectorSize( num_input_nodes);
traintargets->SetMeasurementVectorSize( num_output_nodes);
testsample->SetMeasurementVectorSize( num_input_nodes);
testtargets->SetMeasurementVectorSize( num_output_nodes);
char* trainFileName = argv[1];
char* testFileName = argv[2];
std::ifstream infile1;
infile1.open(trainFileName, std::ios::in);
if (infile1.fail())
{
std::cout << argv[0] << " Cannot open training file for reading: "
<< trainFileName << std::endl;
return EXIT_FAILURE;
}
for (int a = 0; a < num_train; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile1 >> mv[i];
}
for (int i = 0; i < num_output_nodes; i++)
{
infile1 >> tv[i];
}
trainsample->PushBack(mv);
traintargets->PushBack(tv);
}
infile1.close();
std::ifstream infile2;
infile2.open(testFileName, std::ios::in);
if (infile2.fail())
{
std::cout << argv[0] << " Cannot open test file for reading: "
<< testFileName << std::endl;
return EXIT_FAILURE;
}
for (int a = 0; a < num_test; a++)
{
for (int i = 0; i < num_input_nodes; i++)
{
infile2 >> mv[i];
}
for (int i = 0; i < num_output_nodes; i++)
{
infile2 >> tv[i];
}
testsample->PushBack(mv);
testtargets->PushBack(tv);
}
infile2.close();
typedef itk::Statistics::RBFNetwork<MeasurementVectorType, TargetVectorType>
RBFNetworkType;
std::cout<<trainsample->Size()<<std::endl;
RBFNetworkType::Pointer net1 = RBFNetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
net1->SetFirstHiddenLayerBias(1.0);
net1->SetOutputLayerBias(1.0);
net1->SetClasses(2);
typedef itk::Statistics::RBFBackPropagationLearningFunction<
RBFNetworkType::LayerInterfaceType, TargetVectorType> RBFLearningFunctionType;
RBFLearningFunctionType::Pointer learningfunction=RBFLearningFunctionType::New();
net1->SetLearningFunction(learningfunction.GetPointer());
//Kmeans Initialization of RBF Centers
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType >
TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample( trainsample );
treeGenerator->SetBucketSize( 16 );
treeGenerator->Update();
typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator<TreeType> EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();
int m1 = rand() % num_train;
int m2 = rand() % num_train;
MeasurementVectorType c1 = trainsample->GetMeasurementVector(m1);
MeasurementVectorType c2 = trainsample->GetMeasurementVector(m2);
EstimatorType::ParametersType initialMeans(6);
for(int i=0; i<3; i++)
{
initialMeans[i] = c1[i];
}
for(int i=3; i<6; i++)
{
initialMeans[i] = c2[i-3];
}
std::cout << c1 << " " << c2 <<std::endl;
estimator->SetParameters( initialMeans );
estimator->SetKdTree( treeGenerator->GetOutput() );
estimator->SetMaximumIteration( 200 );
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
std::cout << estimatedMeans.size() << std::endl;
std::cout << estimatedMeans << std::endl;
MeasurementVectorType initialcenter1(num_input_nodes);
initialcenter1[0]=estimatedMeans[0]; //110;
initialcenter1[1]=estimatedMeans[1]; //250;
initialcenter1[2]=estimatedMeans[2]; //50;
net1->SetCenter(initialcenter1);
MeasurementVectorType initialcenter2(num_input_nodes);
initialcenter2[0]=estimatedMeans[3]; //99;
initialcenter2[1]=estimatedMeans[4]; //199;
initialcenter2[2]=estimatedMeans[5]; //300;
net1->SetCenter(initialcenter2);
DistanceMetricType::Pointer DistanceMetric = DistanceMetricType::New();
double width = DistanceMetric->Evaluate(initialcenter1,initialcenter2);
net1->SetRadius(2*width);
net1->SetRadius(2*width);
net1->Initialize();
net1->InitializeWeights();
net1->SetLearningRate(0.5);
typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(500);
trainingfcn->SetThreshold(0.001);
trainingfcn->Train(net1, trainsample, traintargets);
//Network Simulation
std::cout << testsample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
SampleType::ConstIterator iter1 = testsample->Begin();
TargetType::ConstIterator iter2 = testtargets->Begin();
unsigned int error1 = 0;
unsigned int error2 = 0;
int flag;
int class_id;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
int count =0;
while (iter1 != testsample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov = net1->GenerateOutput(mv);
std::cout << "Target = " << tv << std::endl;
std::cout << "Output = " << ov << std::endl;
flag=0;
if(ov[0]>ov[1])
{
class_id=1;
}
else
{
class_id=-1;
}
if(class_id==1 && count >100)
{
flag =1;
}
if(class_id==-1 && count <100)
{
flag =2;
}
if (flag == 1)
{
++error1;
}
else if (flag == 2)
{
++error2;
}
outfile << mv << " " << tv << " " << ov << std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
count++;
}
std::cout << "Among "<<num_test<<" measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl;
std::cout << "Network Weights = " << std::endl;
std::cout << net1 << std::endl;
std::cout << error1 << " " << error2 <<std::endl;
std::cout << "Test passed." << std::endl;
if (double(error1 / 10) > 5 || double(error2 / 10) > 5)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
if (double(error1 / 10) > 2 || double(error2 / 10) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|