1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkListSample.h"
#include <fstream>
#define ROUND(x) (floor(x+0.5))
int
XORTest2(int argc, char* argv[])
{
if (argc < 2)
{
std::cout << "Usage: " << argv[0]
<< " InputTrainingFile(.txt)" << std::endl;
return EXIT_FAILURE;
}
char* dataFileName = argv[1];
const int num_input_nodes = 2;
const int num_hidden_nodes = 2;
const int num_output_nodes = 1;
typedef itk::Vector<double, num_input_nodes> MeasurementVectorType;
typedef itk::Vector<double, num_output_nodes> TargetVectorType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::IterativeSupervisedTrainingFunction<SampleType, TargetType, double> TrainingFcnType;
MeasurementVectorType mv;
TargetVectorType tv;
SampleType::Pointer sample = SampleType::New();
TargetType::Pointer targets = TargetType::New();
sample->SetMeasurementVectorSize( num_input_nodes);
targets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(dataFileName, std::ios::in);
if (infile1.fail())
{
std::cout << argv[0] << " Cannot open file for reading: "
<< dataFileName << std::endl;
return EXIT_FAILURE;
}
infile1 >> mv[0] >> mv[1] >> tv[0];
while (!infile1.eof())
{
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
sample->PushBack(mv);
targets->PushBack(tv);
infile1 >> mv[0] >> mv[1] >> tv[0];
}
infile1.close();
std::cout << sample->Size() << std::endl;
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer net1 = OneHiddenLayerBackPropagationNeuralNetworkType::New();
net1->SetNumOfInputNodes(num_input_nodes);
net1->SetNumOfFirstHiddenNodes(num_hidden_nodes);
net1->SetNumOfOutputNodes(num_output_nodes);
net1->Initialize();
net1->InitializeWeights();
net1->SetLearningRate(0.01);
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(20000);
trainingfcn->SetThreshold(0.001);
trainingfcn->Train(net1, sample, targets);
//Network Simulation
std::cout << sample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
TargetVectorType ov;
ov.Fill(0.0);
SampleType::ConstIterator iter1 = sample->Begin();
TargetType::ConstIterator iter2 = targets->Begin();
unsigned int error1 = 0;
unsigned int error2 = 0;
int flag;
std::ofstream outfile;
outfile.open("out1.txt",std::ios::out);
if (outfile.fail())
{
std::cout << argv[0] << " Cannot open file for writing: "
<< "out1.txt" << std::endl;
return EXIT_FAILURE;
}
while (iter1 != sample->End())
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov.SetVnlVector(net1->GenerateOutput(mv));
flag = 0;
if (std::fabs(tv[0]-ov[0])>0.2)
{
flag = 1;
}
if (flag == 1 && ROUND(tv[0]) == 1)
{
++error1;
}
else if (flag == 1 && ROUND(tv[0]) == -1)
{
++error2;
}
outfile<<mv[0]<<" "<<mv[1]<<" "<<tv[0]<<" "<<ov[0]<<std::endl;
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among 4 measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl;
std::cout<<"Network Weights and Biases after Training= "<<std::endl;
std::cout << net1 << std::endl;
if ((error1 + error2) > 2)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|