File: itkConjugateGradientOptimizerTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (277 lines) | stat: -rw-r--r-- 7,937 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkConjugateGradientOptimizer.h"
#include "itkMath.h"


/**
 *  The objectif function is the quadratic form:
 *
 *  1/2 x^T A x - b^T x
 *
 *  Where A is represented as an itkMatrix and
 *  b is represented as a itkVector
 *
 *  The system in this example is:
 *
 *     | 3  2 ||x|   | 2|   |0|
 *     | 2  6 ||y| + |-8| = |0|
 *
 *
 *   the solution is the vector | 2 -2 |
 *
 * \class conjugateCostFunction
 */
class conjugateCostFunction : public itk::SingleValuedCostFunction
{
public:

  typedef conjugateCostFunction             Self;
  typedef itk::SingleValuedCostFunction     Superclass;
  typedef itk::SmartPointer<Self>           Pointer;
  typedef itk::SmartPointer<const Self>     ConstPointer;
  itkNewMacro( Self );
  itkTypeMacro( conjugateCostFunction, SingleValuedCostFunction );

  enum { SpaceDimension=2 };

  typedef Superclass::ParametersType              ParametersType;
  typedef Superclass::DerivativeType              DerivativeType;

  typedef vnl_vector<double>                      VectorType;
  typedef vnl_matrix<double>                      MatrixType;

  typedef double MeasureType;


  conjugateCostFunction()
  {
  }

  virtual double GetValue( const ParametersType & position ) const ITK_OVERRIDE
  {

    double x = position[0];
    double y = position[1];

    std::cout << "GetValue ( ";
    std::cout << x << " , " << y;
    std::cout << ") = ";

    double val = 0.5*(3*x*x+4*x*y+6*y*y) - 2*x + 8*y;

    std::cout << val << std::endl;

    return val;
  }

  void GetDerivative( const ParametersType & position,
                            DerivativeType & derivative ) const ITK_OVERRIDE
  {

    double x = position[0];
    double y = position[1];

    std::cout << "GetDerivative ( ";
    std::cout << x << " , " << y;
    std::cout << ") = ";

    derivative = DerivativeType(SpaceDimension);
    derivative[0] = 3*x + 2*y -2;
    derivative[1] = 2*x + 6*y +8;
    std::cout << "(";
    std::cout << derivative[0] <<" , ";
    std::cout << derivative[1] << ")" << std::endl;
  }

  virtual unsigned int GetNumberOfParameters(void) const ITK_OVERRIDE
    {
    return SpaceDimension;
    }

private:


};

class CommandIterationUpdateConjugateGradient : public itk::Command
{
public:
  typedef  CommandIterationUpdateConjugateGradient   Self;
  typedef  itk::Command                              Superclass;
  typedef itk::SmartPointer<Self>                    Pointer;
  itkNewMacro( Self );

protected:
  CommandIterationUpdateConjugateGradient()
  {
    m_IterationNumber=0;
  }

public:
  typedef itk::ConjugateGradientOptimizer   OptimizerType;
  typedef   const OptimizerType   *         OptimizerPointer;

  virtual void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
      Execute( (const itk::Object *)caller, event);
    }

  virtual void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
      OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
      if( m_FunctionEvent.CheckEvent( &event ) )
        {
        std::cout << m_IterationNumber++ << "   ";
        std::cout << optimizer->GetCachedValue() << "   ";
        std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
        }
      else if( m_GradientEvent.CheckEvent( &event ) )
        {
        std::cout << "Gradient " << optimizer->GetCachedDerivative() << "   ";
        }

    }

private:
  unsigned long m_IterationNumber;

  itk::FunctionEvaluationIterationEvent m_FunctionEvent;
  itk::GradientEvaluationIterationEvent m_GradientEvent;
};

int itkConjugateGradientOptimizerTest(int, char* [] )
{
  std::cout << "Conjugate Gradient Optimizer Test \n \n";

  typedef  itk::ConjugateGradientOptimizer  OptimizerType;

  typedef  OptimizerType::InternalOptimizerType  vnlOptimizerType;

  // Declaration of a itkOptimizer
  OptimizerType::Pointer  itkOptimizer = OptimizerType::New();


  // Declaration of the CostFunction adaptor
  conjugateCostFunction::Pointer costFunction = conjugateCostFunction::New();


  itkOptimizer->SetCostFunction( costFunction.GetPointer() );


  vnlOptimizerType * vnlOptimizer = itkOptimizer->GetOptimizer();

  const double F_Tolerance      = 1e-3;  // Function value tolerance
  const double G_Tolerance      = 1e-4;  // Gradient magnitude tolerance
  const double X_Tolerance      = 1e-8;  // Search space tolerance
  const double Epsilon_Function = 1e-10; // Step
  const int    Max_Iterations   =   100; // Maximum number of iterations

  vnlOptimizer->set_f_tolerance( F_Tolerance );
  vnlOptimizer->set_g_tolerance( G_Tolerance );
  vnlOptimizer->set_x_tolerance( X_Tolerance );
  vnlOptimizer->set_epsilon_function( Epsilon_Function );
  vnlOptimizer->set_max_function_evals( Max_Iterations );

  vnlOptimizer->set_check_derivatives( 3 );


  OptimizerType::ParametersType initialValue(2);       // constructor requires vector size
  // We start not so far from  | 2 -2 |
  initialValue[0] =  100;
  initialValue[1] = -100;


  OptimizerType::ParametersType currentValue(2);

  currentValue = initialValue;

  itkOptimizer->SetInitialPosition( currentValue );

  CommandIterationUpdateConjugateGradient::Pointer observer =
    CommandIterationUpdateConjugateGradient::New();
  itkOptimizer->AddObserver( itk::IterationEvent(), observer );
  itkOptimizer->AddObserver( itk::FunctionEvaluationIterationEvent(), observer );


  try
    {
    itkOptimizer->StartOptimization();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during Optimization" << std::endl;
    std::cout << "Location    = " << e.GetLocation()    << std::endl;
    std::cout << "Description = " << e.GetDescription() << std::endl;
    return EXIT_FAILURE;
    }


  std::cout << "Number of iters = " << itkOptimizer->GetCurrentIteration()  << std::endl;
  std::cout << "Number of evals = " << vnlOptimizer->get_num_evaluations() << std::endl;

  std::cout << "Report from vnl optimizer: " << std::endl;
  std::cout << "Stop description   = " << itkOptimizer->GetStopConditionDescription() << std::endl;

  std::cout << std::endl;

  //
  // check results to see if it is within range
  //

  OptimizerType::ParametersType finalPosition;
  finalPosition = itkOptimizer->GetCurrentPosition();

  std::cout << "Solution        = (";
  std::cout << finalPosition[0] << ",";
  std::cout << finalPosition[1] << ")" << std::endl;

  bool pass = true;
  double trueParameters[2] = { 2, -2 };
  for( unsigned int j = 0; j < 2; j++ )
    {
    if( itk::Math::abs( finalPosition[j] - trueParameters[j] ) > 0.01 )
      pass = false;
    }

  if( !pass )
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  // Get the final value of the optimizer
  std::cout << "Testing GetValue() : ";
  OptimizerType::MeasureType finalValue = itkOptimizer->GetValue();
  if(std::fabs(finalValue+10.0)>0.01)
    {
    std::cout << "[FAILURE]" << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cout << "[SUCCESS]" << std::endl;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;


}