File: itkCumulativeGaussianOptimizerTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (122 lines) | stat: -rw-r--r-- 5,178 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkCumulativeGaussianOptimizer.h"

#include <iostream>

/**
 * Generate test data with the Cumulative Gaussian Cost Function
 * given parameter values for mean, standard deviation,
 * lower and upper asymptotes of a Cumulative Gaussian.
 * Estimate the parameters of the test data with the
 * Cumulative Gaussian optimizer. The solution should
 * be within differenceTolerance of the fitError.
 */

int itkCumulativeGaussianOptimizerTest(int, char* [] )
{
  double mean                = 3; // Mean of the Cumulative Gaussian.
                                  // Ranges from 0 to N-1, where N is numberOfSamples.
  double standardDeviation   = 2; // Standard deviation of the Cumulative Gaussian.
  double lowerAsymptote      = -10; // Lower asymptotic value of the Cumulative Gaussian.
  int    numberOfSamples     = 9; // Number of data samples.
  double upperAsymptote      = 10; // Upper asymptotic value of the Cumulative Gaussian.
  double differenceTolerance = 1e-20; // Tolerance allowed for the difference between Gaussian iterations.

  // Typedef and initialization for the Cumulative Gaussian Optimizer.
  typedef itk::CumulativeGaussianOptimizer CumulativeGaussianOptimizerType;
  CumulativeGaussianOptimizerType::Pointer optimizer = CumulativeGaussianOptimizerType::New();

  // Typedef and initialization for the Cumulative Gaussian Cost Function.
  typedef itk::CumulativeGaussianCostFunction CostFunctionType;
  CostFunctionType::Pointer costFunction = CostFunctionType::New();

  // Declare and initialize the data array.
  //CostFunctionType::MeasureType * cumGaussianArray = new CostFunctionType::MeasureType();
  //cumGaussianArray->SetSize(numberOfSamples);

  // Set the parameters.
  CostFunctionType::ParametersType parameters;
  parameters.SetSize(4);
  parameters[0] = mean;
  parameters[1] = standardDeviation;
  parameters[2] = lowerAsymptote;
  parameters[3] = upperAsymptote;

  // Set the range of data sampled from a Cumulative Gaussian.
  costFunction->Initialize(numberOfSamples);

  // Generate data given a set of parameters.
  CostFunctionType::MeasureType * cumGaussianArray = costFunction->GetValuePointer(parameters);

  // Set the data array.
  costFunction->SetOriginalDataArray(cumGaussianArray);

  // Set the cost function.
  optimizer->SetCostFunction(costFunction);

  // Set the tolerance for the Gaussian iteration error.
  optimizer->SetDifferenceTolerance(differenceTolerance);

  // Print results after each iteration.
  optimizer->SetVerbose(1);

  // Set the data array.
  optimizer->SetDataArray(cumGaussianArray);

  // Start optimization;
  optimizer->StartOptimization();

  std::cout << "StopConditionDescription: " << optimizer->GetStopConditionDescription() << std::endl;

  // The test passes if the difference between the given parameters and estimated parameters
  // is less than or equal to 0.1.
  if( std::fabs(optimizer->GetComputedMean() - mean) <= 0.1 &&
      std::fabs(optimizer->GetComputedStandardDeviation() - standardDeviation) <= 0.1 &&
      std::fabs(optimizer->GetUpperAsymptote() - upperAsymptote) <= 0.1 &&
      std::fabs(optimizer->GetLowerAsymptote() - lowerAsymptote) <= 0.1)
    {
    std::cerr << std::endl
      << "Test Passed with a Fit Error of " << optimizer->GetFitError()
      << std::endl << std::endl;

    // Print out the resulting parameters.
    std::cerr << "Fitted mean = " << optimizer->GetComputedMean() << std::endl;
    std::cerr << "Fitted standard deviation = " << optimizer->GetComputedStandardDeviation() << std::endl;
    std::cerr << "Fitted upper intensity = " << optimizer->GetUpperAsymptote() << std::endl;
    std::cerr << "Fitted lower intensity = " << optimizer->GetLowerAsymptote() << std::endl;
    std::cout << "[TEST DONE]" << std::endl;
    return EXIT_SUCCESS;
    }
  else
    {
    std::cerr << std::endl
      << "Test Failed with a Fit Error of " << optimizer->GetFitError()
      << std::endl << std::endl;

    // Print out the resulting parameters.
    std::cerr << "Fitted mean = " << optimizer->GetComputedMean() << std::endl;
    std::cerr << "Fitted standard deviation = " << optimizer->GetComputedStandardDeviation() << std::endl;
    std::cerr << "Fitted upper asymptote = " << optimizer->GetUpperAsymptote() << std::endl;
    std::cerr << "Fitted lower asymptote = " << optimizer->GetLowerAsymptote() << std::endl;

    return EXIT_FAILURE;
    }

}