1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGradientDescentOptimizer.h"
#include "itkMath.h"
/**
* The objectif function is the quadratic form:
*
* 1/2 x^T A x - b^T x
*
* Where A is a matrix and b is a vector
* The system in this example is:
*
* | 3 2 ||x| | 2| |0|
* | 2 6 ||y| + |-8| = |0|
*
*
* the solution is the vector | 2 -2 |
*
* \class gradientCostFunction
*/
class gradientCostFunction : public itk::SingleValuedCostFunction
{
public:
typedef gradientCostFunction Self;
typedef itk::SingleValuedCostFunction Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro( Self );
itkTypeMacro( gradientCostFunction, SingleValuedCostFunction );
enum { SpaceDimension=2 };
typedef Superclass::ParametersType ParametersType;
typedef Superclass::DerivativeType DerivativeType;
typedef Superclass::MeasureType MeasureType;
gradientCostFunction()
{
}
virtual MeasureType GetValue( const ParametersType & parameters ) const ITK_OVERRIDE
{
double x = parameters[0];
double y = parameters[1];
std::cout << "GetValue( ";
std::cout << x << " ";
std::cout << y << ") = ";
MeasureType measure = 0.5*(3*x*x+4*x*y+6*y*y) - 2*x + 8*y;
std::cout << measure << std::endl;
return measure;
}
void GetDerivative( const ParametersType & parameters,
DerivativeType & derivative ) const ITK_OVERRIDE
{
double x = parameters[0];
double y = parameters[1];
std::cout << "GetDerivative( ";
std::cout << x << " ";
std::cout << y << ") = ";
DerivativeType temp(SpaceDimension);
temp.Fill( 0 );
derivative = temp;
derivative[0] = 3 * x + 2 * y -2;
derivative[1] = 2 * x + 6 * y +8;
std::cout << derivative << std::endl;
}
virtual unsigned int GetNumberOfParameters(void) const ITK_OVERRIDE
{
return SpaceDimension;
}
private:
};
int itkGradientDescentOptimizerTest(int, char* [] )
{
std::cout << "Gradient Descent Optimizer Test ";
std::cout << std::endl << std::endl;
typedef itk::GradientDescentOptimizer OptimizerType;
// Declaration of a itkOptimizer
OptimizerType::Pointer itkOptimizer = OptimizerType::New();
// Declaration of the CostFunction
gradientCostFunction::Pointer costFunction = gradientCostFunction::New();
itkOptimizer->SetCostFunction( costFunction.GetPointer() );
typedef gradientCostFunction::ParametersType ParametersType;
const unsigned int spaceDimension =
costFunction->GetNumberOfParameters();
// We start not so far from | 2 -2 |
ParametersType initialPosition( spaceDimension );
initialPosition[0] = 100;
initialPosition[1] = -100;
itkOptimizer->MinimizeOn();
itkOptimizer->SetLearningRate( 0.1 );
itkOptimizer->SetNumberOfIterations( 50 );
itkOptimizer->SetInitialPosition( initialPosition );
try
{
itkOptimizer->StartOptimization();
}
catch( itk::ExceptionObject & e )
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
ParametersType finalPosition = itkOptimizer->GetCurrentPosition();
std::cout << "Solution = (";
std::cout << finalPosition[0] << ",";
std::cout << finalPosition[1] << ")" << std::endl;
//
// check results to see if it is within range
//
bool pass = true;
double trueParameters[2] = { 2, -2 };
for( unsigned int j = 0; j < 2; j++ )
{
if( itk::Math::abs( finalPosition[j] - trueParameters[j] ) > 0.01 )
pass = false;
}
// Exercise various member functions.
std::cout << "Maximize: " << itkOptimizer->GetMaximize() << std::endl;
std::cout << "LearningRate: " << itkOptimizer->GetLearningRate();
std::cout << std::endl;
std::cout << "NumberOfIterations: " << itkOptimizer->GetNumberOfIterations();
std::cout << std::endl;
itkOptimizer->Print( std::cout );
std::cout << "Stop description = " << itkOptimizer->GetStopConditionDescription() << std::endl;
if( !pass )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|